OFFSET
0,2
COMMENTS
A 4_1-Dyck path is a lattice path with steps U = (1, 4), d = (1, -1) that starts at (0,0), stays (weakly) above y = -1, and ends at the x-axis.
LINKS
Stefano Spezia, Table of n, a(n) for n = 0..900
A. Asinowski, B. Hackl, and S. Selkirk, Down step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.
FORMULA
a(n) = 2*binomial(5*(n+1)+2, n+1)/(5*(n+1)+2) - 4*binomial(5*n+2, n)/(5*n+2).
G.f.: ((1 - 2*x)*HypergeometricPFQ([2/5, 3/5, 4/5, 6/5], [3/4, 5/4, 3/2], 3125*x/256) - 1)/x. - Stefano Spezia, Apr 25 2023
EXAMPLE
For n=1, a(1) = 7 is the total number of down-steps after the last up-step in Udddd, dUddd.
MATHEMATICA
a[n_] := 2 * Binomial[5*n + 7, n + 1]/(5*n + 7) - 4 * Binomial[5*n + 2, n]/(5*n + 2); Array[a, 21, 0] (* Amiram Eldar, May 13 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrei Asinowski, May 13 2020
STATUS
approved