|
|
A238810
|
|
Number of nX6 0..2 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of the sum of elements above it, modulo 3
|
|
1
|
|
|
7, 58, 498, 4167, 31125, 197418, 1055763, 4880856, 19977948, 73988808, 252222789, 801902972, 2401864834, 6830347670, 18555055873, 48388061335, 121621970223, 295617804194, 696809050142, 1596626133081, 3563675765061, 7762159805512
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Column 6 of A238812
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = (1/1520925880320000)*n^21 - (521/4001483566080000)*n^20 + (280733/18246765061324800)*n^19 - (1009091/800296713216000)*n^18 + (1263428351/16005934264320000)*n^17 - (87961871/22417274880000)*n^16 + (157308110957/988601822208000)*n^15 - (561404357/105080976000)*n^14 + (32579981539913/217275125760000)*n^13 - (32002299106123/9053130240000)*n^12 + (507775457096141/7242504192000)*n^11 - (201470624506693/172440576000)*n^10 + (24782574974039318761/1520925880320000)*n^9 - (88935042592877896031/470762772480000)*n^8 + (127322197843062321569/70614415872000)*n^7 - (164460777264425293243/11769069312000)*n^6 + (1692671803663313850131/19615115520000)*n^5 - (3282324324299663003969/7939451520000)*n^4 + (598543228210824605143/405242838000)*n^3 - (57018800117252562839/15437822400)*n^2 + (25752092538637987/4476780)*n - 4188294729 for n>8
|
|
EXAMPLE
|
Some solutions for n=5
..0..0..0..0..2..2....0..0..0..0..2..2....0..2..2..0..0..0....0..0..0..2..2..0
..0..0..0..0..2..2....0..2..2..0..1..1....0..2..1..0..0..2....0..0..0..2..1..2
..0..0..2..2..0..1....0..2..1..0..0..0....0..0..0..0..2..2....0..0..0..0..2..2
..0..0..2..2..0..1....0..0..0..0..0..0....2..1..0..2..1..0....0..2..2..0..1..1
..2..2..1..1..0..2....2..1..0..0..0..0....2..1..0..2..2..1....2..1..2..1..2..1
|
|
CROSSREFS
|
Sequence in context: A202975 A051816 A015566 * A334610 A244469 A006193
Adjacent sequences: A238807 A238808 A238809 * A238811 A238812 A238813
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Mar 05 2014
|
|
STATUS
|
approved
|
|
|
|