The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A334682 a(n) is the total number of down-steps after the final up-step in all 3-Dyck paths of length 4*n (n up-steps and 3*n down-steps). 10
 0, 3, 18, 118, 829, 6115, 46736, 366912, 2941528, 23981628, 198224910, 1657364566, 13992405626, 119118427610, 1021399476720, 8813544248100, 76475285228304, 666865500290884, 5840843616021192, 51361847992315320, 453282040123194425, 4013440075484640675 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A 3-Dyck path is a lattice path with steps U = (1, 3), d = (1, -1) that starts at (0,0), stays (weakly) above the x-axis, and ends at the x-axis. LINKS Andrei Asinowski, Benjamin Hackl, Sarah J. Selkirk, Down-step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020. FORMULA a(n) = binomial(4*(n+1)+1, n+1)/(4*(n+1)+1) - binomial(4*n+1, n)/(4*n+1). a(n) = A062750(n+1, 3*n-1). EXAMPLE For n=2 the a(2)=18 is the total number of down-steps after the last up-step in UdddUddd, UddUdddd, UdUddddd, UUdddddd. MAPLE b:= proc(x, y) option remember; `if`(x=y, x,      `if`(y+30, b(x-1, y-1), 0))     end: a:= n-> b(4*n, 0): seq(a(n), n=0..21);  # Alois P. Heinz, May 09 2020 # second Maple program: a:= proc(n) option remember; `if`(n<2, 3*n, (8*(4*n-1)*       (2*n-1)*(4*n-3)*n*(229*n^2+303*n+98)*a(n-1))/       (3*(n-1)*(3*n+2)*(3*n+4)*(n+1)*(229*n^2-155*n+24)))     end: seq(a(n), n=0..21);  # Alois P. Heinz, May 09 2020 MATHEMATICA nmax = 21; A[_] = 0; Do[A[x_] = 1 + x A[x]^4 + O[x]^(nmax + 2), nmax + 2]; CoefficientList[A[x], x] // Differences (* Jean-François Alcover, Aug 17 2020 *) PROG (PARI) a(n) = {binomial(4*(n+1)+1, n+1)/(4*(n+1)+1) - binomial(4*n+1, n)/(4*n+1)} \\ Andrew Howroyd, May 08 2020 CROSSREFS First order differences of A002293. Cf. A062750. Sequence in context: A113328 A196865 A153394 * A320616 A009065 A109714 Adjacent sequences:  A334679 A334680 A334681 * A334683 A334684 A334685 KEYWORD nonn AUTHOR Andrei Asinowski, May 08 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 30 15:29 EDT 2021. Contains 346359 sequences. (Running on oeis4.)