

A334679


Numbers k such that k*p is divisible by k+p, where p > 0 and p = A007954(k) = the product of digits of k.


3



2, 4, 6, 8, 24, 36, 63, 456, 495, 3276, 6624, 7497, 8832, 19728, 23976, 127488, 167328, 273525, 274995, 297675, 576975, 661248, 797769, 853776, 1323648, 1378272, 1491264, 1886976, 3483648, 3679263, 3787749, 4644864, 6386688, 7886592, 7888896, 12841472, 15974784, 16224768
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Giovanni Resta, Table of n, a(n) for n = 1..95 (terms < 3.5*10^14)


EXAMPLE

8 is a term as p = 8 and 8*8 = 64 is divisible by 8+8 = 16.
3276 is a term as p = 3*2*7*6 = 252 and 3276*252 = 825552 is divisible by 3276+252 = 3528.
3787749 is a term as p = 3*7*8*7*7*4*9 = 296352 and 3787749*296352 = 1122506991648 is divisible by 3787749+296352 = 4084101.


MATHEMATICA

Select[Range[10^6], (p = Times @@ IntegerDigits@ #; p > 0 && Mod[# p, # + p] == 0) &] (* Giovanni Resta, May 08 2020 *)


PROG

(PARI) isok(m) = my(p=vecprod(digits(m))); p && !((m*p) % (m+p)); \\ Michel Marcus, May 08 2020


CROSSREFS

Cf. A330880, A334803, A007954, A049102, A085124.
Subsequence of A052382.
Sequence in context: A119260 A219616 A067732 * A222712 A117912 A092047
Adjacent sequences: A334676 A334677 A334678 * A334680 A334681 A334682


KEYWORD

nonn,base


AUTHOR

Scott R. Shannon, May 08 2020


STATUS

approved



