login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A334680 a(n) is the total number of down-steps after the final up-step in all 2-Dyck paths of length 3*n (n up-steps and 2*n down-steps). 4
0, 2, 9, 43, 218, 1155, 6324, 35511, 203412, 1184040, 6983925, 41652468, 250763464, 1521935948, 9301989144, 57203999295, 353701790376, 2197600497330, 13713291247635, 85907187607395, 540072341320050, 3406202392821375, 21545888897092560, 136655834260685220, 868897745157965328 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A 2-Dyck path is a lattice path with steps U = (1, 2), d = (1, -1) that starts at (0,0), stays (weakly) above the x-axis, and ends at the x-axis.

LINKS

Table of n, a(n) for n=0..24.

Andrei Asinowski, Benjamin Hackl, Sarah J. Selkirk, Down-step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.

FORMULA

a(n) = binomial(3*(n+1) + 1, n+1)/(3*(n+1) + 1) - binomial(3*n + 1, n)/(3*n + 1).

a(n) = (17 + 23*n)*binomial(3*n, n - 1)/((2*n + 2)*(2*n + 3)).

a(n) = A062745(n+1, 2*n-1).

EXAMPLE

For n = 2, the a(2) = 9 is the total number of down-steps after the last up-step in UddUdd, UdUddd, UUdddd.

MAPLE

alias(PS=ListTools:-PartialSums): A334680List := proc(m) local A, P, n;

A := [0, 2]; P := [1, 2]; for n from 1 to m - 2 do P := PS(PS([op(P), P[-1]]));

A := [op(A), P[-1]] od; A end: A334680List(25); # Peter Luschny, Mar 26 2022

MATHEMATICA

a[n_] := Binomial[3*n + 4, n + 1]/(3*n + 4) - Binomial[3*n + 1, n]/(3*n + 1); Array[a, 25, 0] (* Amiram Eldar, May 13 2020 *)

PROG

(SageMath) [(17 + 23*n)*binomial(3*n, n-1)/(2*n+2)/(2*n+3) for n in srange(30)] # Benjamin Hackl, May 13 2020

CROSSREFS

First order differences of A001764.

The 4th column of A280759.

Cf. A062745.

Sequence in context: A055728 A006795 A055824 * A324619 A292099 A020113

Adjacent sequences:  A334677 A334678 A334679 * A334681 A334682 A334683

KEYWORD

nonn,easy

AUTHOR

Andrei Asinowski, May 08 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 03:00 EDT 2022. Contains 354835 sequences. (Running on oeis4.)