The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022022 Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(5,45). 1
 5, 45, 406, 3664, 33067, 298425, 2693244, 24306152, 219359637, 1979690177, 17866428166, 161242026212, 1455186832835, 13132858524565, 118522219370436, 1069646525028644, 9653410934956277, 87120689404042085, 786252089896134534, 7095815621924558952, 64038747861388870507 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This coincides with the linearly recurrent sequence defined by the expansion of (5 - 4*x^2)/(1 - 9*x - x^2 + 7*x^3) only up to n <= 103. - Bruno Berselli, Feb 11 2016 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 FORMULA a(n+1) = floor(a(n)^2/a(n-1))+1 for all n > 0. - M. F. Hasler, Feb 10 2016 MAPLE a:= proc(n) option remember;       `if`(n<2, [5, 45][n+1], floor(a(n-1)^2/a(n-2))+1)     end: seq(a(n), n=0..30);  # Alois P. Heinz, Sep 18 2015 MATHEMATICA nxt[{a_, b_}]:=Module[{c=Ceiling[b^2/a]}, c=If[c<=b^2/a, c+1, c]; {b, c}]; Transpose[NestList[nxt, {5, 45}, 20]][[1]] (* Harvey P. Dale, Feb 11 2014 *) PROG (PARI) a=[5, 45]; for(n=2, 30, a=concat(a, a[n]^2\a[n-1]+1)); a \\ M. F. Hasler, Feb 10 2016 CROSSREFS Cf. A022018 - A022025, A022026 - A022032. Sequence in context: A067403 A173292 A173558 * A058410 A005979 A165225 Adjacent sequences:  A022019 A022020 A022021 * A022023 A022024 A022025 KEYWORD nonn AUTHOR EXTENSIONS Double-checked and edited by M. F. Hasler, Feb 10 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 11:30 EDT 2021. Contains 347556 sequences. (Running on oeis4.)