login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377638
Number of edge cuts in the n-gear graph.
1
1, 5, 45, 419, 3665, 30795, 253137, 2056059, 16589761, 133362635, 1069841265, 8572141979, 68638314785, 549385589355, 4396357712337, 35176668544059, 281439836584321, 2251639520143115, 18013667322023985, 144111852725650139, 1152906290230734305, 9223302635674623915
OFFSET
0,2
COMMENTS
The sequence has been extended to n=0 using the recurrence. - Andrew Howroyd, Nov 26 2024
LINKS
Eric Weisstein's World of Mathematics, Edge Cut.
Eric Weisstein's World of Mathematics, Gear Graph.
FORMULA
G.f.: (1 - 9*x + 30*x^2 + 6*x^3)/((1 - x)*(1 - 8*x)*(1 - 5*x + 2*x^2)). - Andrew Howroyd, Nov 26 2024
a(n) = 14*a(n-1)-55*a(n-2)+58*a(n-3)-16*a(n-4). (* Eric W. Weisstein, Dec 01 2024 *)
MATHEMATICA
Table[2 + 8^n - (1/2 (5 - Sqrt[17]))^n - (1/2 (5 + Sqrt[17]))^n, {n, 0, 20}] // Expand (* Eric W. Weisstein, Dec 01 2024 *)
LinearRecurrence[{14, -55, 58, -16}, {1, 5, 45, 419}, 20] (* Eric W. Weisstein, Dec 01 2024 *)
CoefficientList[Series[(1 - 9 x + 30 x^2 + 6 x^3)/((-1 + x) (-1 + 8 x) (1 - 5 x + 2 x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2024 *)
PROG
(PARI) Vec((1 - 9*x + 30*x^2 + 6*x^3)/((1 - x)*(1 - 8*x)*(1 - 5*x + 2*x^2)) + O(x^22)) \\ Andrew Howroyd, Nov 26 2024
CROSSREFS
Sequence in context: A173558 A022022 A058410 * A005979 A165225 A121272
KEYWORD
nonn,easy,changed
AUTHOR
Eric W. Weisstein, Nov 03 2024
EXTENSIONS
a(0)-a(2) prepended and a(10) onwards from Andrew Howroyd, Nov 26 2024
STATUS
approved