login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165225
a(0)=1, a(1)=5, a(n) = 10*a(n-1) - 5*a(n-2) for n > 1.
6
1, 5, 45, 425, 4025, 38125, 361125, 3420625, 32400625, 306903125, 2907028125, 27535765625, 260822515625, 2470546328125, 23401350703125, 221660775390625, 2099601000390625, 19887706126953125, 188379056267578125
OFFSET
0,2
COMMENTS
Sum_{k=1..(m-1)/2} tan^(2n) (k*Pi/m) is an integer when m >= 3 is an odd integer (see AMM and Crux Mathematicorum links); twice this sequence is the particular case m = 5. - Bernard Schott, Apr 25 2022
LINKS
Michel Bataille and Li Zhou, A Combinatorial Sum Goes on Tangent, The American Mathematical Monthly, Vol. 112, No. 7 (Aug. - Sep., 2005), Problem 11044, pp. 657-659.
D. J. Smeenk, Problem 3452, Crux Mathematicorum, Vol. 35, No. 5 (2009), pp. 325 and 327; Solution to Problem 3452 by Roy Barbara, ibid., Vol. 36, No. 5 (2010), pp. 341-342.
FORMULA
Limit_{n->oo} a(n+1)/a(n) = 5 + 2*sqrt(5) = 9.47213595...
G.f.: (1-5x)/(1-10x+5x^2).
a(n) = ((5 - 2*sqrt(5))^n + (5 + 2*sqrt(5))^n)/2. - Klaus Brockhaus, Sep 25 2009
a(n) = (tan(Pi/5)^(2*n) + tan(2*Pi/5)^(2*n))/2 (Smeenk, 2009). - Amiram Eldar, Apr 03 2022
MATHEMATICA
LinearRecurrence[{10, -5}, {1, 5}, 30] (* Harvey P. Dale, Dec 23 2019 *)
CROSSREFS
Similar with: A000244 (m=3), 2*this sequence (m=5), A108716 (m=7), A353410 (m=9), A275546 (m=11), A353411 (m=13).
Sequence in context: A058410 A377638 A005979 * A121272 A346580 A054318
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Sep 09 2009
EXTENSIONS
More terms from Klaus Brockhaus, Sep 25 2009
STATUS
approved