OFFSET
0,2
COMMENTS
Sum_{k=1..(m-1)/2} tan^(2n) (k*Pi/m) is an integer when m >= 3 is an odd integer (see AMM and Crux Mathematicorum links); twice this sequence is the particular case m = 5. - Bernard Schott, Apr 25 2022
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000.
Michel Bataille and Li Zhou, A Combinatorial Sum Goes on Tangent, The American Mathematical Monthly, Vol. 112, No. 7 (Aug. - Sep., 2005), Problem 11044, pp. 657-659.
D. J. Smeenk, Problem 3452, Crux Mathematicorum, Vol. 35, No. 5 (2009), pp. 325 and 327; Solution to Problem 3452 by Roy Barbara, ibid., Vol. 36, No. 5 (2010), pp. 341-342.
Index entries for linear recurrences with constant coefficients, signature (10,-5).
FORMULA
Limit_{n->oo} a(n+1)/a(n) = 5 + 2*sqrt(5) = 9.47213595...
G.f.: (1-5x)/(1-10x+5x^2).
a(n) = ((5 - 2*sqrt(5))^n + (5 + 2*sqrt(5))^n)/2. - Klaus Brockhaus, Sep 25 2009
a(n) = (tan(Pi/5)^(2*n) + tan(2*Pi/5)^(2*n))/2 (Smeenk, 2009). - Amiram Eldar, Apr 03 2022
MATHEMATICA
LinearRecurrence[{10, -5}, {1, 5}, 30] (* Harvey P. Dale, Dec 23 2019 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Sep 09 2009
EXTENSIONS
More terms from Klaus Brockhaus, Sep 25 2009
STATUS
approved