login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377641
a(n) = 3^n + 2^(3*n + 1) - 2^(2*n + 1).
1
11, 105, 923, 7761, 63731, 516825, 4163723, 33429921, 267930851, 2145445545, 17171657723, 137405930481, 1099379004371, 8795560934265, 70366611042923, 562941406533441, 4503565396772291, 36028659967430985, 288229827558159323, 2305840813677222801
OFFSET
1,1
COMMENTS
Also number of edge cuts in the n-book graph.
LINKS
Eric Weisstein's World of Mathematics, Book Graph.
Eric Weisstein's World of Mathematics, Edge Cut.
FORMULA
a(n) = 15*a(n-1)-68*a(n-2)+96*a(n-3).
G.f.: x*(-11+60*x-96*x^2)/(-1+15*x-68*x^2+96*x^3).
MATHEMATICA
Table[3^n + 2^(3 n + 1) - 2^(2 n + 1), {n, 20}]
LinearRecurrence[{15, -68, 96}, {11, 105, 923}, 20]
CoefficientList[Series[-(11 - 60 x + 96 x^2)/((-1 + 3 x) (-1 + 4 x) (-1 + 8 x)), {x, 0, 20}], x]
PROG
(Python)
def A377641(n): return 3**n+(2<<3*n)-(2<<(n<<1)) # Chai Wah Wu, Nov 03 2024
CROSSREFS
Sequence in context: A372146 A163933 A359987 * A099839 A287834 A075183
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Nov 03 2024
STATUS
approved