login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3^n + 2^(3*n + 1) - 2^(2*n + 1).
1

%I #8 Nov 04 2024 09:30:51

%S 11,105,923,7761,63731,516825,4163723,33429921,267930851,2145445545,

%T 17171657723,137405930481,1099379004371,8795560934265,70366611042923,

%U 562941406533441,4503565396772291,36028659967430985,288229827558159323,2305840813677222801

%N a(n) = 3^n + 2^(3*n + 1) - 2^(2*n + 1).

%C Also number of edge cuts in the n-book graph.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BookGraph.html">Book Graph</a>.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EdgeCut.html">Edge Cut</a>.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (15,-68,96).

%F a(n) = 15*a(n-1)-68*a(n-2)+96*a(n-3).

%F G.f.: x*(-11+60*x-96*x^2)/(-1+15*x-68*x^2+96*x^3).

%t Table[3^n + 2^(3 n + 1) - 2^(2 n + 1), {n, 20}]

%t LinearRecurrence[{15, -68, 96}, {11, 105, 923}, 20]

%t CoefficientList[Series[-(11 - 60 x + 96 x^2)/((-1 + 3 x) (-1 + 4 x) (-1 + 8 x)), {x, 0, 20}], x]

%o (Python)

%o def A377641(n): return 3**n+(2<<3*n)-(2<<(n<<1)) # _Chai Wah Wu_, Nov 03 2024

%K nonn,easy

%O 1,1

%A _Eric W. Weisstein_, Nov 03 2024