login
A022023
Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(6,30).
1
6, 30, 151, 761, 3836, 19337, 97477, 491378, 2477019, 12486565, 62944332, 317300149, 1599498817, 8063016906, 40645382751, 204891935393, 1032852992092, 5206575364849, 26246162074765, 132305973770306, 666949729466899, 3362069972805741, 16948075698414380
OFFSET
0,1
COMMENTS
This coincides with the linearly recurrent sequence defined by the expansion of (6 - 5*x^2)/(1 - 5*x - x^2 + 4*x^3) only up to n <= 69. - Bruno Berselli, Feb 11 2016
LINKS
FORMULA
a(n+1) = floor(a(n)^2/a(n-1))+1 for all n > 0. - M. F. Hasler, Feb 10 2016
MAPLE
A022023 := proc(n)
option remember;
if n <= 1 then
op(n+1, [6, 30]) ;
else
a := procname(n-1)^2/procname(n-2) ;
if type(a, 'integer') then
a+1 ;
else
ceil(a) ;
fi;
end if;
end proc: # R. J. Mathar, Feb 10 2016
PROG
(PARI) a=[6, 30]; for(n=2, 30, a=concat(a, a[n]^2\a[n-1]+1)); a \\ M. F. Hasler, Feb 10 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Double-checked and extended to 3 lines of data by M. F. Hasler, Feb 10 2016
STATUS
approved