login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022024
Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(6,66).
2
6, 66, 727, 8009, 88232, 972018, 10708349, 117969769, 1299627646, 14317498734, 157730385799, 1737655093709, 19143078927992, 210891949829430, 2323315631208341, 25595076182769253, 281971126093205254, 3106367622527151978, 34221659288246953735, 377006879658404795777
OFFSET
0,1
COMMENTS
This coincides with the linearly recurrent sequence defined by the expansion of (6 - 5*x^2)/(1 - 11*x - x^2 + 9*x^3) only up to n <= 169. - Bruno Berselli, Feb 11 2016
LINKS
FORMULA
a(n+1) = floor(a(n)^2/a(n-1))+1 for all n > 0. - M. F. Hasler, Feb 10 2016
MAPLE
A022024 := proc(n)
option remember;
if n <= 1 then
op(n+1, [6, 66]) ;
else
a := procname(n-1)^2/procname(n-2) ;
if type(a, 'integer') then
a+1 ;
else
ceil(a) ;
fi;
end if;
end proc: # R. J. Mathar, Feb 10 2016
MATHEMATICA
a[n_] := a[n] = Switch[n, 0, 6, 1, 66, _, Floor[a[n-1]^2/a[n-2]]+1];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 08 2024 *)
PROG
(PARI) a=[6, 66]; for(n=2, 30, a=concat(a, a[n]^2\a[n-1]+1)); a \\ M. F. Hasler, Feb 10 2016
(Python)
def a(n):
if n == 0: return 6
prev_1, prev_2 = 66, 6
for i in range(2, n + 1):
prev_2, prev_1 = prev_1, (prev_1 ** 2) // prev_2 + 1
return prev_1 # Paul Muljadi, Feb 12 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Double-checked and extended to 3 lines of data by M. F. Hasler, Feb 10 2016
STATUS
approved