OFFSET
0,1
COMMENTS
This coincides with the linearly recurrent sequence defined by the expansion of (6 - 5*x^2)/(1 - 11*x - x^2 + 9*x^3) only up to n <= 169. - Bruno Berselli, Feb 11 2016
LINKS
Colin Barker, Table of n, a(n) for n = 0..950
FORMULA
a(n+1) = floor(a(n)^2/a(n-1))+1 for all n > 0. - M. F. Hasler, Feb 10 2016
MAPLE
A022024 := proc(n)
option remember;
if n <= 1 then
op(n+1, [6, 66]) ;
else
a := procname(n-1)^2/procname(n-2) ;
if type(a, 'integer') then
a+1 ;
else
ceil(a) ;
fi;
end if;
end proc: # R. J. Mathar, Feb 10 2016
MATHEMATICA
a[n_] := a[n] = Switch[n, 0, 6, 1, 66, _, Floor[a[n-1]^2/a[n-2]]+1];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 08 2024 *)
PROG
(PARI) a=[6, 66]; for(n=2, 30, a=concat(a, a[n]^2\a[n-1]+1)); a \\ M. F. Hasler, Feb 10 2016
(Python)
def a(n):
if n == 0: return 6
prev_1, prev_2 = 66, 6
for i in range(2, n + 1):
prev_2, prev_1 = prev_1, (prev_1 ** 2) // prev_2 + 1
return prev_1 # Paul Muljadi, Feb 12 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Double-checked and extended to 3 lines of data by M. F. Hasler, Feb 10 2016
STATUS
approved