login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199832
T(n,k)=Number of -k..k arrays x(0..n+1) of n+2 elements with zero sum and no two neighbors summing to zero
17
2, 10, 4, 24, 40, 4, 44, 140, 114, 10, 70, 336, 646, 426, 22, 102, 660, 2146, 3556, 1650, 34, 140, 1144, 5390, 15708, 20240, 6126, 66, 184, 1820, 11384, 49302, 118280, 113884, 23206, 138, 234, 2720, 21364, 124982, 462234, 888420, 645780, 88636, 250, 290, 3876
OFFSET
1,1
COMMENTS
Table starts
...2......10........24.........44..........70..........102...........140
...4......40.......140........336.........660.........1144..........1820
...4.....114.......646.......2146........5390........11384.........21364
..10.....426......3556......15708.......49302.......124982........273728
..22....1650.....20240.....118280......462234......1402934.......3579520
..34....6126....113884.....888420.....4340094.....15805218......47040968
..66...23206....645780....6715618....41008804....179213048.....622300326
.138...88636...3685550...51077518...389832124...2044221894....8281149188
.250..337866..21117750..390278378..3723199342..23427591518..110718596524
.472.1295566.121503530.2993722414.35697026718.269528370904.1486040082748
LINKS
FORMULA
Empirical for rows:
T(1,k) = 3*k^2 - k
T(2,k) = (16/3)*k^3 - (4/3)*k
T(3,k) = (115/12)*k^4 - (29/6)*k^3 + (5/12)*k^2 - (7/6)*k
T(4,k) = (88/5)*k^5 - (28/3)*k^4 + (2/3)*k^3 + (7/3)*k^2 - (19/15)*k
T(5,k) = (5887/180)*k^6 - (1013/60)*k^5 + (245/36)*k^4 - (35/12)*k^3 + (157/45)*k^2 - (6/5)*k
T(6,k) = (19328/315)*k^7 - (1424/45)*k^6 + (704/45)*k^5 - (112/9)*k^4 - (124/45)*k^3 + (229/45)*k^2 - (131/105)*k
T(7,k) = (259723/2240)*k^8 - (299869/5040)*k^7 + (39757/1440)*k^6 - (8303/360)*k^5 + (31829/2880)*k^4 - (8083/720)*k^3 + (32213/5040)*k^2 - (509/420)*k
T(8,k) = (124952/567)*k^9 - (35524/315)*k^8 + (50588/945)*k^7 - (2494/45)*k^6 + (13739/270)*k^5 - (1927/180)*k^4 - (41254/2835)*k^3 + (3319/420)*k^2 - (781/630)*k
EXAMPLE
Some solutions for n=4 k=3
..3....2...-2...-3...-3....3...-1...-1....0...-1....3...-1....2...-3....1....3
..3....2....0....0....1...-2....0....2....2....2....3....0...-1...-1....3....1
.-2....0....1....1....2...-2....1....2....1....0....0....1...-3....2....2...-2
.-2...-1...-2....0....2....0...-3....2....1...-2...-2...-2...-1...-1...-3...-3
..1...-1....0....3....1....3....1...-3...-2...-1...-1....0....3....2...-1....2
.-3...-2....3...-1...-3...-2....2...-2...-2....2...-3....2....0....1...-2...-1
CROSSREFS
Row 1 is A049450
Sequence in context: A189881 A189872 A319407 * A189878 A189869 A054790
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Nov 11 2011
STATUS
approved