login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199837
Number of -n..n arrays x(0..7) of 8 elements with zero sum and no two neighbors summing to zero.
1
34, 6126, 113884, 888420, 4340094, 15805218, 47040968, 120843752, 277500282, 583380598, 1141982292, 2107735180, 3702875670, 6237700074, 10134506112, 15955531856, 24435201362, 36516986238, 53395192396, 76561981236
OFFSET
1,1
COMMENTS
Row 6 of A199832.
LINKS
FORMULA
Empirical: a(n) = (19328/315)*n^7 - (1424/45)*n^6 + (704/45)*n^5 - (112/9)*n^4 - (124/45)*n^3 + (229/45)*n^2 - (131/105)*n.
Conjectures from Colin Barker, May 16 2018: (Start)
G.f.: 2*x*(17 + 2927*x + 32914*x^2 + 73486*x^3 + 40405*x^4 + 4819*x^5 + 56*x^6) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for n=3:
..0....1....2....2...-2....0...-2....0...-2....2....1...-2...-1...-3....0...-2
..2....0....0....1...-1....2...-1....1....0....1....3....1....2....0...-2....3
..2...-3....1....0....0...-3....0....2....2....2....0....0....1....3....3....0
.-3....0...-3...-2...-1...-1....1...-3...-3....0....1....2...-2....0....2....1
..0....1....0...-2....0....0....1...-1...-1...-3...-3....2...-1...-1...-1....2
..3...-3...-1....3....1....1....0...-1....3...-1...-1....0....0....0...-1....0
.-2....2...-2....0....2....2....2....0....3...-3...-3...-1....3....1....0...-2
.-2....2....3...-2....1...-1...-1....2...-2....2....2...-2...-2....0...-1...-2
CROSSREFS
Cf. A199832.
Sequence in context: A291976 A212035 A292750 * A267916 A005334 A033511
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 11 2011
STATUS
approved