login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of -n..n arrays x(0..8) of 9 elements with zero sum and no two neighbors summing to zero.
1

%I #11 May 25 2021 05:11:21

%S 66,23206,645780,6715618,41008804,179213048,622300326,1827026482,

%T 4719970500,11025201168,23740333870,47800415256,90973748554,

%U 165038447302,287293180292,482460245532,785043786046,1242210635346,1917265955424

%N Number of -n..n arrays x(0..8) of 9 elements with zero sum and no two neighbors summing to zero.

%C Row 7 of A199832.

%H R. H. Hardin, <a href="/A199838/b199838.txt">Table of n, a(n) for n = 1..80</a>

%F Empirical: a(n) = (259723/2240)*n^8 - (299869/5040)*n^7 + (39757/1440)*n^6 - (8303/360)*n^5 + (31829/2880)*n^4 - (8083/720)*n^3 + (32213/5040)*n^2 - (509/420)*n.

%F Conjectures from _Colin Barker_, Mar 02 2018: (Start)

%F G.f.: 2*x*(33 + 11306*x + 219651*x^2 + 866735*x^3 + 937667*x^4 + 283090*x^5 + 18897*x^6 + 128*x^7) / (1 - x)^9.

%F a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.

%F (End)

%e Some solutions for n=3:

%e .-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3....0

%e .-3...-3...-3....2....2....2....2....1...-1....0...-1...-3....2....0....1...-3

%e .-1...-1....0....1...-1....0....0...-3...-1....2....0...-1....3....1...-2...-2

%e ..2....0...-3...-3...-2....1....2....1....2...-1....2...-1....1....2....1....3

%e ..0....2....2...-3....3...-3....0....3....2....0....2....3...-2....1....3...-1

%e .-1....0....3...-2....0...-1...-3...-1...-3...-3....0....3...-3....3...-1...-2

%e ..3....3....0....3...-1....2...-1....3....0....0....1....0....1....0....2....3

%e ..3....0....2....2....0....1....2....1....2....3...-2....3....2...-1....2...-1

%e ..0....2....2....3....2....1....1...-2....2....2....1...-1...-1...-3...-3....3

%Y Cf. A199832.

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 11 2011