login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of unlabeled self-converse digraphs with n nodes and k arcs, k=0..n*(n-1).
1

%I #11 Apr 20 2020 00:26:53

%S 1,1,1,1,1,1,1,2,2,2,1,1,1,1,3,5,9,10,12,10,9,5,3,1,1,1,1,3,6,15,24,

%T 41,57,77,84,90,84,77,57,41,24,15,6,3,1,1,1,1,3,7,20,42,91,164,295,

%U 463,683,918,1185,1394,1550,1590,1550,1394,1185,918,683,463,295,164,91,42,20,7,3,1,1

%N Triangle read by rows: T(n,k) is the number of unlabeled self-converse digraphs with n nodes and k arcs, k=0..n*(n-1).

%H Andrew Howroyd, <a href="/A126067/b126067.txt">Table of n, a(n) for n = 0..2680</a> (rows 0..20)

%e Triangle begins:

%e 1;

%e 1;

%e 1,1,1;

%e 1,1,2,2,2,1,1;

%e 1,1,3,5,9,10,12,10,9,5,3,1,1;

%e 1,1,3,6,15,24,41,57,77,84,90,84,77,57,41,24,15,6,3,1,1;

%e ....

%o (PARI)

%o permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}

%o edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(c=gcd(v[i], v[j])*if(v[i]*v[j]%2==0, 2, 1)); t(2*v[i]*v[j]/c)^c)) * prod(i=1, #v, my(c=v[i]); if(c%2, t(2*c)^(c\2), t(c)^(c-1-c%4/2)*t(c/2)^(c%4)))}

%o Row(n) = {my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); Vecrev(s)/n!}

%o { for(n=0, 5, print(Row(n))) } \\ _Andrew Howroyd_, Apr 19 2020

%Y Row sums are A002499.

%Y Cf. A052283, A126066.

%K nonn,tabf

%O 0,8

%A _Vladeta Jovovic_, Feb 28 2007

%E a(0)=1 prepended and terms a(46) and beyond from _Andrew Howroyd_, Apr 19 2020