login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175724
Partial sums of floor(n^2/12).
6
0, 0, 0, 0, 1, 3, 6, 10, 15, 21, 29, 39, 51, 65, 81, 99, 120, 144, 171, 201, 234, 270, 310, 354, 402, 454, 510, 570, 635, 705, 780, 860, 945, 1035, 1131, 1233, 1341, 1455, 1575, 1701, 1834, 1974, 2121, 2275, 2436, 2604, 2780, 2964, 3156, 3356
OFFSET
0,6
COMMENTS
Partial sums of A008724.
Maximum Wiener index of all maximal 6-degenerate graphs with n-2 vertices. (A maximal 6-degenerate graph can be constructed from a 6-clique by iteratively adding a new 6-leaf (vertex of degree 6) adjacent to 6 existing vertices.) The extremal graphs are 6th powers of paths, so the bound also applies to 6-trees. - Allan Bickle, Sep 18 2022
LINKS
Allan Bickle and Zhongyuan Che, Wiener indices of maximal k-degenerate graphs, arXiv:1908.09202 [math.CO], 2019.
Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round((2*n^3 + 3*n^2 - 18*n)/72).
a(n) = a(n-6) + (n-2)*(n-3)/2, n>5.
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +a(n-6) -3*a(n-7) +3*a(n-8) -a(n-9), n>8.
G.f.: x^4/((x+1)*(x^2+x+1)*(x^2-x+1)*(x-1)^4).
An explicit formula appears in the Bickle/Che paper.
MAPLE
A175724 := proc(n) add( floor(i^2/12) , i=0..n) ; end proc:
MATHEMATICA
Accumulate[Floor[Range[0, 49]^2/12]]
PROG
(Magma) [ &+[ Floor(j^2/12): j in [0..n] ]: n in [0..60] ];
(PARI) vector(61, n, round((2*(n-1)^3 +3*(n-1)^2 -18*(n-1))/72) ) \\ G. C. Greubel, Dec 05 2019
(Sage) [round((2*n^3 +3*n^2 -18*n)/72) for n in (0..60)] # G. C. Greubel, Dec 05 2019
CROSSREFS
Cf. A008724.
Maximum Wiener index of all maximal k-degenerate graphs for k=1..6: A000292, A002623, A014125, A122046, A122047, (this sequence).
Sequence in context: A062099 A115650 A025745 * A335184 A101551 A227430
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Aug 18 2010
STATUS
approved