login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062099
Triangular numbers whose sum of digits is a triangular number.
1
0, 1, 3, 6, 10, 15, 21, 28, 55, 78, 91, 105, 120, 136, 190, 210, 231, 253, 276, 300, 325, 406, 465, 528, 703, 780, 820, 861, 1081, 1176, 1225, 1275, 1540, 1596, 1653, 1711, 1770, 2080, 2211, 2346, 2701, 2775, 2850, 3003, 3160, 3403, 3486, 3570, 3741, 3828
OFFSET
1,3
LINKS
EXAMPLE
a(8) = 28 is a triangular number and the sum of digits 10 is also a triangular number.
MATHEMATICA
With[{trnos=Accumulate[Range[0, 200]]}, Select[trnos, MemberQ[trnos, Total[ IntegerDigits[ #]]]&]] (* Harvey P. Dale, Feb 26 2013 *)
PROG
(PARI) SumD(x)= { s=0; while (x>9, s+=x-10*(x\10); x\=10); return(s + x) } { default(realprecision, 100); n=t=0; for (m=0, 10^4, s=SumD(t+=m); if (((sqrt(8*s + 1) - 1)/2)%1 == 0, write("b062099.txt", n++, " ", t); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 01 2009
(Magma) [ t: n in [0..90] | IsSquare(8*s+1) where s is &+Intseq(t) where t is n*(n+1) div 2 ]; // Bruno Berselli, May 27 2011
CROSSREFS
Cf. A000217.
Sequence in context: A179653 A117520 A147846 * A115650 A025745 A175724
KEYWORD
nonn,base,easy
AUTHOR
Amarnath Murthy, Jun 16 2001
EXTENSIONS
More terms from Erich Friedman, Jun 20 2001
STATUS
approved