

A062096


a(1) = 2; for n > 1, a(n) is smallest number, greater than a(n1), which is relatively prime to the sum of all previous terms.


0



2, 3, 4, 5, 9, 10, 13, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 45, 46, 47, 49, 50, 51, 53, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 79, 81, 83, 85, 86, 88, 89, 95, 96, 97, 101, 102, 103, 107, 108, 109, 113, 114
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..68.


EXAMPLE

After 5 the next term is 9 as 2 + 3 + 4 + 5 = 14 and 6, 7 and 8 have common divisors with 14.


MAPLE

a[1]:=2: for m from 2 to 80 do b:=proc(n) if gcd(sum(a[j], j=1..m1), n)=1 then n else fi end: M:=[seq(b(n), n=a[m1]+1..200)]: a[m]:=M[1] od:seq(a[n], n=1..80); # Emeric Deutsch, Jul 18 2005


PROG

(PARI) first(n) = my(v = vector(n), s, t); s = v[1] = 2; for(i = 2, n, t=v[i1]+1; while(gcd(t, s)!=1, t++); v[i]=t; s+=v[i])); v \\ David A. Corneth, Aug 11 2017


CROSSREFS

Sequence in context: A015837 A262511 A075177 * A176008 A143827 A100797
Adjacent sequences: A062093 A062094 A062095 * A062097 A062098 A062099


KEYWORD

nonn,easy


AUTHOR

Amarnath Murthy, Jun 19 2001


EXTENSIONS

Corrected and extended by Emeric Deutsch, Jul 18 2005


STATUS

approved



