login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175722
a(n) = -a(n-1) + a(n-2) - F(-n) + 1, a(0) = 1, a(1) = -1, where F() = Fibonacci numbers A000045.
4
1, -1, 4, -6, 14, -24, 47, -83, 152, -268, 476, -832, 1453, -2517, 4348, -7474, 12810, -21880, 37275, -63335, 107376, -181656, 306744, -517056, 870169, -1462249, 2453812, -4112478, 6884102, -11510808, 19226951, -32084027, 53489288, -89097892, 148290068
OFFSET
0,3
FORMULA
G.f.: 1/(- x^m + 1 - x^(1 + m) + x + 3*x^(2 + m) - 2*x^2 - x^(3 + m)) for m=2.
G.f.: 1 / ((1 - x) * (1 + x - x^2)^2). - Michael Somos, Mar 11 2014
a(n) = A006478(-2-n) for all n in Z. - Michael Somos, Mar 11 2014
a(n) = 1 + (-1)^n*(n*Lucas(n+1) + 7*Fibonacci(n))/5. - G. C. Greubel, Dec 04 2019
E.g.f.: exp(-x/2)*(25*exp(3*x/2) - 15*x*cosh(sqrt(5)*x/2) + sqrt(5)*(5*x - 14)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Jul 24 2022
EXAMPLE
G.f. = 1 - x + 4*x^2 - 6*x^3 + 14*x^4 - 24*x^5 + 47*x^6 - 83*x^7 + 152*x^8 + ...
MAPLE
with(combinat); seq( 1 + (-1)^n*(n*fibonacci(n+2) + (n+7)*fibonacci(n))/5, n=0..40); # G. C. Greubel, Dec 04 2019
MATHEMATICA
f[x_, m_] = ExpandAll[(x -x^(m+1))*(1-x-x^2) -(1 -2*x +x^(m+1))];
g[x_, n_] = ExpandAll[x^(m + 3)*f[1/x, m]];
a = Table[Table[SeriesCoefficient[Series[1/g[x, m], {x, 0, 20}], n], {n, 0, 20}], {m, 1, 20}]
CoefficientList[Series[1/((1-x)(1+x-x^2)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 13 2014 *)
RecurrenceTable[{a[0]==1, a[1]==-1, a[n]==-a[n-1]+a[n-2]-Fibonacci[-n]+1}, a, {n, 40}] (* Harvey P. Dale, May 12 2018 *)
Table[1 + (-1)^n*(n*LucasL[n+1] + 7*Fibonacci[n])/5, {n, 0, 40}] (* G. C. Greubel, Dec 04 2019 *)
PROG
(PARI) {a(n) = if( n<0, polcoeff( x^5 / ((1 - x) * (1 - x - x^2)^2) + x * O(x^-n), -n), polcoeff( 1 / ((1 - x) * (1 + x - x^2)^2) + x * O(x^n), n))}; /* Michael Somos, Mar 11 2014 */
(PARI) vector(41, n, my(f=fibonacci); 1 -(-1)^n*((n-1)*f(n+1) +(n+6)*f(n-1))/5 ) \\ G. C. Greubel, Dec 04 2019
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1+x-x^2)^2))); // G. C. Greubel, Aug 14 2018
(Sage) [1 + (-1)^n*(n*lucas_number2(n+1, 1, -1) + 7*fibonacci(n))/5 for n in (0..40)] # G. C. Greubel, Dec 04 2019
(GAP) List([0..40], n-> 1 + (-1)^n*(n*Lucas(1, -1, n+1)[2] + 7*Fibonacci(n))/5 ); # G. C. Greubel, Dec 04 2019
CROSSREFS
Cf. m=1: A077899, m large: A077925.
Sequence in context: A097271 A126867 A027632 * A200186 A370410 A192782
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Dec 04 2010
STATUS
approved