login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027632
Molien series for group Gamma_{3,0}(2).
0
1, 1, 4, 6, 14, 23, 45, 72, 126, 195, 315, 472, 720, 1042, 1520, 2132, 2995, 4089, 5568, 7418, 9843, 12833, 16652, 21304, 27117, 34114, 42705, 52930, 65294, 79867, 97253, 117562, 141516, 169265, 201665, 238922, 282030, 331264, 387780, 451920, 525023, 607517
OFFSET
0,3
LINKS
Bernhard Runge, On Siegel modular forms, part II, Nagoya Math. J. 138, 179-197 (1995)
Index entries for linear recurrences with constant coefficients, signature (2, 1, -3, -1, 1, 4, -2, -5, 3, 4, 0, -4, -3, 5, 2, -4, -1, 1, 3, -1, -2, 1).
FORMULA
G.f.: N_Hecke(x)*(1 + x^2)/((1 - x^2)*(1 - x^4)^3*(1 - x^6)*(1 - x^12)*(1 - x^14)) where N_Hecke(x)= 1 - x^2 + x^4 + 2*x^8 + x^10 + 2*x^12 + x^14 + 5*x^16 + x^18 + 6*x^20 + 2*x^22 + 6*x^24 + 2*x^26 + 6*x^28 + x^30 + 5*x^32 + x^34 + 2*x^36 + x^38 + 2*x^40 + x^44 - x^46 + x^48.
MATHEMATICA
CoefficientList[Series[-(1-x+x^2+2 x^4+x^5+2 x^6+x^7+5 x^8+x^9+6 x^10+2 x^11+6 x^12+2 x^13+6 x^14+x^15+5 x^16+x^17+2 x^18+x^19+2 x^20+x^22-x^23+x^24)/((-1+x)^7 (1+x)^3 (1-x+x^2) (1+x+x^2)^2 (1+x+x^2+x^3+x^4+x^5+x^6)), {x, 0, 30}], x] (* Peter J. C. Moses, Dec 22 2013 *)
LinearRecurrence[{2, 1, -3, -1, 1, 4, -2, -5, 3, 4, 0, -4, -3, 5, 2, -4, -1, 1, 3, -1, -2, 1}, {1, 1, 4, 6, 14, 23, 45, 72, 126, 195, 315, 472, 720, 1042, 1520, 2132, 2995, 4089, 5568, 7418, 9843, 12833, 16652, 21304, 27117}, 50] (* Harvey P. Dale, Apr 23 2022 *)
CROSSREFS
Sequence in context: A210632 A097271 A126867 * A175722 A200186 A370410
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms and formula from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 24 2001
More terms from Peter J. C. Moses, Dec 22 2013
STATUS
approved