login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027631
Molien series for Hecke group H_{3,4}.
0
1, 1, 4, 6, 15, 24, 49, 78, 141, 219, 364, 550, 861, 1261, 1884, 2682, 3856, 5350, 7452, 10100, 13699, 18183, 24104, 31404, 40816, 52297, 66809, 84334, 106110, 132164, 164062, 201896, 247626, 301429, 365727, 440818, 529656, 632693
OFFSET
0,3
LINKS
Bernhard Runge, On Siegel modular forms, part II, Nagoya Math. J. 138, 179-197 (1995)
Index entries for linear recurrences with constant coefficients, signature (2, 1, -3, 0, -1, 3, 1, -4, 2, 0, 2, 1, -6, 1, 2, 0, 2, -4, 1, 3, -1, 0, -3, 1, 2, -1).
FORMULA
G.f.: N_Hecke(x)*(1 + x^2)/((1 - x^2)*(1 - x^4)^3*(1 - x^6)*(1 - x^8)*(1 - x^12)*(1 - x^14)) where N_Hecke(x)= 1 - x^2 + x^4 + 2*x^8 + x^10 + 2*x^12 + x^14 + 5*x^16 + x^18 + 6*x^20 + 2*x^22 + 6*x^24 + 2*x^26 + 6*x^28 + x^30 + 5*x^32 + x^34 + 2*x^36 + x^38 + 2*x^40 + x^44 - x^46 + x^48.
MATHEMATICA
ker = {2, 1, -3, 0, -1, 3, 1, -4, 2, 0, 2, 1}; LinearRecurrence[Join[ker, {-6}, Reverse[ker], {-1}], {1, 1, 4, 6, 15, 24, 49, 78, 141, 219, 364, 550, 861, 1261, 1884, 2682, 3856, 5350, 7452, 10100, 13699, 18183, 24104, 31404, 40816, 52297}, 40] (* Jean-François Alcover, Jun 11 2017 *)
CROSSREFS
Sequence in context: A300276 A109731 A369437 * A128620 A358438 A045907
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms and formula from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 24 2001
STATUS
approved