login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101551
a(n) = C(n-2,2)+C(n-5,5)+...+C(n-(3*floor((n-3)/3)+2),3*floor((n-3)/3)+2).
4
0, 0, 0, 0, 1, 3, 6, 10, 15, 21, 29, 42, 66, 111, 192, 330, 554, 906, 1452, 2303, 3651, 5826, 9382, 15225, 24807, 40431, 65748, 106584, 172321, 278184, 448980, 725140, 1172412, 1897380, 3072365, 4975551, 8055918, 13038606, 21096027, 34125561
OFFSET
0,6
FORMULA
G.f.: x^4/((1-x)^3-x^6) = -x^4/ ((x^2+x-1)*(x^4-x^3+2*x^2-2*x+1)).
a(n) = Sum_{k=0..n} if(mod(k+1, 3)=0, C(n-k, k), 0).
a(n+2) = Sum_{k=0..floor(n/6)} binomial(n-3k, 3k+2). - Paul Barry, Jan 13 2005
MATHEMATICA
CoefficientList[Series[x^4/((1-x)^3-x^6), {x, 0, 50}], x] (* Vincenzo Librandi, Jul 08 2012 *)
LinearRecurrence[{3, -3, 1, 0, 0, 1}, {0, 0, 0, 0, 1, 3}, 40] (* Harvey P. Dale, Feb 20 2014 *)
CROSSREFS
Sequence in context: A025745 A175724 A335184 * A227430 A051166 A373934
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 06 2004
STATUS
approved