login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101553
A modular recurrence.
2
1, 5, 15, 75, 225, 1125, 3375, 16875, 50625, 253125, 759375, 3796875, 11390625, 56953125, 170859375, 854296875, 2562890625, 12814453125, 38443359375, 192216796875, 576650390625, 2883251953125, 8649755859375, 43248779296875
OFFSET
0,2
COMMENTS
Interpolated zeros suppressed.
FORMULA
a(n) = b(2*n) where b(0)=1, b(1)=0, b(n) = (3 + 2*(n/2 mod 2))*b(n-2).
a(n) = A100747(2(n+1))/3.
a(2n) = 15^n, a(2n+1) = 5*15^n. - Ralf Stephan, May 16 2007
O.g.f.: (1+5*x)/(1-15*x^2). - Philippe Deléham, Dec 02 2011
MAPLE
a:=n->mul(4-(-1)^j, j=1..n):seq(a(n), n=0..23); # Zerinvary Lajos, Dec 13 2008
MATHEMATICA
CoefficientList[Series[(1+5x)/(1-15x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[ {0, 15}, {1, 5}, 30] (* Harvey P. Dale, Oct 14 2013 *)
RecurrenceTable[{a[n] == (3 + 2*Mod[n/2, 2])*a[n - 2], a[0] == 1, a[1] == 0}, a, {n, 0, 50}][[1 ;; ;; 2]] (* G. C. Greubel, Apr 16 2018 *)
PROG
(PARI) x='x+O('x^30); Vec((1+5*x)/(1-15*x^2)) \\ G. C. Greubel, Apr 16 2018
(Magma) I:=[1, 5]; [n le 2 select I[n] else 15*Self(n-2): n in [1..30]]; // G. C. Greubel, Apr 16 2018
CROSSREFS
Sequence in context: A149651 A149652 A151487 * A149653 A149654 A149655
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 06 2004
STATUS
approved