OFFSET
0,6
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..5000
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,0,0,0,0,0,0,1,-3,3,-1).
FORMULA
a(n) = round((2*n^3 + 3*n^2 - 23*n - 12)/66).
a(n) = floor((2*n^3 + 3*n^2 - 23*n + 18)/66).
a(n) = ceiling((2*n^3 + 3*n^2 - 23*n - 42)/66).
a(n) = a(n-11) + (n-5)^2 + 6, n > 10.
From R. J. Mathar, Nov 24 2010: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-11) - 3*a(n-12) + 3*a(n-13) - a(n-14).
G.f.: x^4*(x+1)*(x^4 - x^3 + x^2 - x + 1) / ((x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x-1)^4). (End)
EXAMPLE
a(6) = 6 = 0 + 0 + 0 + 0 + 1 + 2 + 3.
MAPLE
A173645(n):=round((2*n^3+3*n^2-23*n-12)/66)
MATHEMATICA
Accumulate[Floor[Range[0, 50]^2/11]] (* Harvey P. Dale, Sep 23 2015 *)
PROG
(Magma) [ &+[Floor(k^2/11): k in [0..n]]: n in [0..60] ]; // Bruno Berselli, Apr 28 2011
(PARI) vector(60, n, n--; (2*n^3+3*n^2-23*n+18)\66) \\ G. C. Greubel, Jul 02 2019
(Sage) [floor((2*n^3+3*n^2-23*n+18)/66) for n in (0..60)] # G. C. Greubel, Jul 02 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Nov 24 2010
STATUS
approved