login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177116
Partial sums of round(n^2/11).
10
0, 0, 0, 1, 2, 4, 7, 11, 17, 24, 33, 44, 57, 72, 90, 110, 133, 159, 188, 221, 257, 297, 341, 389, 441, 498, 559, 625, 696, 772, 854, 941, 1034, 1133, 1238, 1349, 1467, 1591, 1722, 1860, 2005, 2158, 2318, 2486, 2662, 2846, 3038, 3239, 3448, 3666, 3893
OFFSET
0,5
COMMENTS
The round function, also called the nearest integer function, is defined here by round(x)=floor(x+1/2).
There are several sequences of integers of the form round(n^2/k) for whose partial sums we can establish identities as following (only for k = 2, ..., 9, 11, 12, 13, 16, 17, 19, 20, 28, 29, 36, 44).
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,0,0,0,0,0,0,1,-3,3,-1).
FORMULA
a(n) = round((n-2)*(n+3)*(2*n+1)/66).
a(n) = floor((2*n^3 + 3*n^2 - 11*n + 18)/66).
a(n) = ceiling((2*n^3 + 3*n^2 - 11*n - 30)/66).
a(n) = round(n*(2*n^2 + 3*n - 11)/66).
a(n) = a(n-11) + (n+1)*(n-11) + 44, n > 10.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-11) - 3*a(n-12) + 3*a(n-13) - a(n-14). - R. J. Mathar, Dec 10 2010
G.f.: x^3 *(1+x) *(x^2-x+1) *(x^4-x^3+x^2-x+1) / ( (x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1) *(x-1)^4 ). - R. J. Mathar, Dec 10 2010 [Typo fixed by Colin Barker, Oct 10 2012]
EXAMPLE
a(11) = 0 + 0 + 0 + 1 + 1 + 2 + 3 + 4 + 6 + 7 + 9 + 11 = 44.
MAPLE
seq(round((2*n^3+3*n^2-11*n)/66), n=0..50)
MATHEMATICA
Accumulate[Round[Range[0, 50]^2/11]] (* or *) LinearRecurrence[{3, -3, 1, 0, 0, 0, 0, 0, 0, 0, 1, -3, 3, -1}, {0, 0, 0, 1, 2, 4, 7, 11, 17, 24, 33, 44, 57, 72}, 60] (* Harvey P. Dale, Dec 10 2014 *)
PROG
(PARI) a(n)=(2*n^3+3*n^2-11*n+18)\66 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. A173690 (k=5), A173691 (k=6), A173722 (k=8), A177100 (k=9), A181120 (k=12).
Sequence in context: A095233 A062434 A084267 * A011911 A175822 A078346
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Dec 09 2010
STATUS
approved