login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084267
Partial sums of a binomial quotient.
0
1, 2, 4, 7, 11, 17, 24, 33, 44, 57, 72, 89, 109, 131, 156, 184, 215, 250, 288, 330, 376, 426, 480, 538, 601, 668, 740, 817, 899, 987, 1080, 1179, 1284, 1395, 1512, 1635, 1765, 1901, 2044, 2194, 2351, 2516, 2688, 2868, 3056, 3252, 3456, 3668, 3889, 4118, 4356
OFFSET
0,2
COMMENTS
Partial sums of A011865 are a(n)=sum{k=0..n, floor(C(k+2,4)/C(k+2,2))}.
FORMULA
a(n)=sum{k=0..n, floor(C(k+4, 4)/C(k+2, 2))}
G.f.: (x^4-x^3+x^2-x+1)/[(1-x)^4(1+x^2)(1+x+x^2)(1-x^2+x^4)].
MATHEMATICA
Accumulate[Table[Floor[Binomial[n, 4]/Binomial[n, 2]], {n, 6, 70}]] (* Harvey P. Dale, Jul 19 2012 *)
CROSSREFS
Sequence in context: A178063 A095233 A062434 * A177116 A011911 A175822
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 01 2003
STATUS
approved