login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084264
Binomial transform of A084263.
2
1, 2, 7, 22, 64, 176, 464, 1184, 2944, 7168, 17152, 40448, 94208, 217088, 495616, 1122304, 2523136, 5636096, 12517376, 27656192, 60817408, 133169152, 290455552, 631242752, 1367343104, 2952790016, 6358564864, 13656653824, 29259464704
OFFSET
0,2
COMMENTS
Also the number of matchings in the (n-1)-book graph. - Eric W. Weisstein, Sep 30 2017
LINKS
Eric Weisstein's World of Mathematics, Book Graph
Eric Weisstein's World of Mathematics, Independent Edge Set
Eric Weisstein's World of Mathematics, Matching
FORMULA
E.g.f.: exp(x)cosh(x)+exp(2x)(x+x^2/2)
O.g.f.: (-1+x)*(1-3*x+4*x^2)/(-1+2*x)^3. - R. J. Mathar, Apr 02 2008
a(0)=1, a(1)=2, a(2)=7, a(3)=22, a(n)=6*a(n-1)-12*a(n-2)+8*a(n-3). - Harvey P. Dale, Mar 25 2012
a(n) = 2^(n-3)*(n^2+3*n+4) for n > 0. - Eric W. Weisstein, Sep 30 2017
MATHEMATICA
CoefficientList[Series[(-1 + x)(1 - 3 x + 4 x^2)/(-1 + 2 x)^3, {x, 0, 30}], x]
Join[{1}, LinearRecurrence[{6, -12, 8}, {2, 7, 22}, 30]]
Table[If[n == 0, 1, 2^(n - 3) (n^2 + 3 n + 4)], {n, 0, 20}] (* Eric W. Weisstein, Sep 30 2017 *)
CROSSREFS
Sequence in context: A018039 A198888 A364539 * A333678 A088211 A071684
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 31 2003
STATUS
approved