OFFSET
0,3
COMMENTS
Binomial transform of A000142 (with interpolated zeros).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..880
Jonathan Fang, Zachary Hamaker, and Justin Troyka, On pattern avoidance in matchings and involutions, arXiv:2009.00079 [math.CO], 2020. See Proposition 4.13 p. 15.
FORMULA
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)*k!.
a(n) = Sum_{k=0..n} C(n, k)*(k/2)!*((1+(-1)^k)/2) .
E.g.f.: exp(x)*(1+sqrt(Pi)/2*x*exp(x^2/4)*erf(x/2)). - Vladeta Jovovic, Sep 25 2003
O.g.f.: A(x) = 1/(1-x-x^2/(1-x-x^2/(1-x-2*x^2/(1-x-2*x^2/(1-x-3*x^2/(1-... -x-[(n+1)/2]*x^2/(1- ...))))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
a_n ~ (1/2) * sqrt(Pi*n/e)*(n/2)^(n/2)*exp(-n/2 + sqrt(2n)). - Cecil C Rousseau (ccrousse(AT)memphis.edu), Mar 14 2006: (cf. A002896).
Conjecture: 2*a(n) -4*a(n-1) +(-n+2)*a(n-2) +(n-2)*a(n-3)=0. - R. J. Mathar, Nov 30 2012
MATHEMATICA
Table[Sum[Binomial[n, 2*k]*k!, {k, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, Jan 24 2017 *)
PROG
(PARI) for(n=0, 50, print1(sum(k=0, floor(n/2), binomial(n, 2*k)*k!), ", ")) \\ G. C. Greubel, Jan 24 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 26 2003
STATUS
approved