login
A084261
A binomial transform of factorial numbers.
12
1, 1, 2, 4, 9, 21, 52, 134, 361, 1009, 2926, 8768, 27121, 86373, 282864, 950866, 3277169, 11564353, 41739130, 153919324, 579411641, 2224535125, 8703993420, 34681783422, 140637608089, 580019801201, 2431509498406, 10355296410712
OFFSET
0,3
COMMENTS
Binomial transform of A000142 (with interpolated zeros).
Row sums of A161556. Hankel transform is A137704. [Paul Barry, Apr 11 2010]
LINKS
Jonathan Fang, Zachary Hamaker, and Justin Troyka, On pattern avoidance in matchings and involutions, arXiv:2009.00079 [math.CO], 2020. See Proposition 4.13 p. 15.
FORMULA
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)*k!.
a(n) = Sum_{k=0..n} C(n, k)*(k/2)!*((1+(-1)^k)/2) .
E.g.f.: exp(x)*(1+sqrt(Pi)/2*x*exp(x^2/4)*erf(x/2)). - Vladeta Jovovic, Sep 25 2003
O.g.f.: A(x) = 1/(1-x-x^2/(1-x-x^2/(1-x-2*x^2/(1-x-2*x^2/(1-x-3*x^2/(1-... -x-[(n+1)/2]*x^2/(1- ...))))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
a_n ~ (1/2) * sqrt(Pi*n/e)*(n/2)^(n/2)*exp(-n/2 + sqrt(2n)). - Cecil C Rousseau (ccrousse(AT)memphis.edu), Mar 14 2006: (cf. A002896).
Conjecture: 2*a(n) -4*a(n-1) +(-n+2)*a(n-2) +(n-2)*a(n-3)=0. - R. J. Mathar, Nov 30 2012
MATHEMATICA
Table[Sum[Binomial[n, 2*k]*k!, {k, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, Jan 24 2017 *)
PROG
(PARI) for(n=0, 50, print1(sum(k=0, floor(n/2), binomial(n, 2*k)*k!), ", ")) \\ G. C. Greubel, Jan 24 2017
CROSSREFS
Sequence in context: A195980 A136753 A289666 * A063026 A106219 A198304
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 26 2003
STATUS
approved