login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084261 A binomial transform of factorial numbers. 10
1, 1, 2, 4, 9, 21, 52, 134, 361, 1009, 2926, 8768, 27121, 86373, 282864, 950866, 3277169, 11564353, 41739130, 153919324, 579411641, 2224535125, 8703993420, 34681783422, 140637608089, 580019801201, 2431509498406, 10355296410712 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Binomial transform of A000142 (with interpolated zeros).

Row sums of A161556. Hankel transform is A137704. [Paul Barry, Apr 11 2010]

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..880

FORMULA

a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)*k!.

a(n) = Sum_{k=0..n} C(n, k)*(k/2)!*((1+(-1)^k)/2) .

E.g.f.: exp(x)*(1+sqrt(Pi)/2*x*exp(x^2/4)*erf(x/2)). - Vladeta Jovovic, Sep 25 2003

O.g.f.: A(x) = 1/(1-x-x^2/(1-x-x^2/(1-x-2*x^2/(1-x-2*x^2/(1-x-3*x^2/(1-... -x-[(n+1)/2]*x^2/(1- ...))))))) (continued fraction). - Paul D. Hanna, Jan 17 2006

a_n ~ (1/2) * sqrt(Pi*n/e)*(n/2)^(n/2)*exp(-n/2 + sqrt(2n)). - Cecil C Rousseau (ccrousse(AT)memphis.edu), Mar 14 2006: (cf. A002896).

Conjecture: 2*a(n) -4*a(n-1) +(-n+2)*a(n-2) +(n-2)*a(n-3)=0. - R. J. Mathar, Nov 30 2012

MATHEMATICA

Table[Sum[Binomial[n, 2*k]*k!, {k, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, Jan 24 2017 *)

PROG

(PARI) for(n=0, 50, print1(sum(k=0, floor(n/2), binomial(n, 2*k)*k!), ", ")) \\ G. C. Greubel, Jan 24 2017

CROSSREFS

Sequence in context: A195980 A136753 A289666 * A063026 A106219 A198304

Adjacent sequences:  A084258 A084259 A084260 * A084262 A084263 A084264

KEYWORD

easy,nonn

AUTHOR

Paul Barry, May 26 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 10:46 EDT 2019. Contains 327094 sequences. (Running on oeis4.)