login
A289666
a(n) = number of weakly threshold graphs on n nodes.
1
0, 1, 2, 4, 9, 21, 52, 134, 355, 957, 2608, 7154, 19701, 54379, 150302, 415762, 1150609, 3185147, 8818620, 24418128, 67615743, 187239359, 518506932, 1435875288, 3976322869, 11011542937, 30494088494, 84446895364, 233857897749, 647620493541
OFFSET
0,3
LINKS
Michael D. Barrus, Weakly threshold graphs, arXiv preprint arXiv:1608.01358 [math.CO], 2016. See W(x).
FORMULA
G.f.: -(x^4+x^2+2*x-1)*x/((x^2+x-1)*(x^3-x^2+3*x-1)).
a(n) = 4*a(n-1) - 3*a(n-2) - a(n-3) - a(n-5) for n>5. - Colin Barker, Jul 26 2017
3*a(n) = 2*A000045(n+1) + A200752(n+3) -2*A200752(n+2), n>0. - R. J. Mathar, Aug 05 2017
MATHEMATICA
a = DifferenceRoot[Function[{a, n}, {a[n] + a[n+2] + 3a[n+3] - 4a[n+4] + a[n+5] == 0, a[0]==0, a[1]==1, a[2]==2, a[3]==4, a[4]==9, a[5]==21}]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 09 2019 *)
LinearRecurrence[{4, -3, -1, 0, -1}, {0, 1, 2, 4, 9, 21}, 30] (* Harvey P. Dale, Sep 15 2024 *)
PROG
(PARI) concat(0, Vec(x*(1 - 2*x - x^2 - x^4) / ((1 - x - x^2)*(1 - 3*x + x^2 - x^3)) + O(x^30))) \\ Colin Barker, Jul 26 2017
CROSSREFS
Sequence in context: A204352 A195980 A136753 * A084261 A063026 A106219
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 25 2017
STATUS
approved