The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A289666 a(n) = number of weakly threshold graphs on n nodes. 1
 0, 1, 2, 4, 9, 21, 52, 134, 355, 957, 2608, 7154, 19701, 54379, 150302, 415762, 1150609, 3185147, 8818620, 24418128, 67615743, 187239359, 518506932, 1435875288, 3976322869, 11011542937, 30494088494, 84446895364, 233857897749, 647620493541 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Michael D. Barrus, Weakly threshold graphs, arXiv preprint arXiv:1608.01358 [math.CO], 2016. See W(x). Index entries for linear recurrences with constant coefficients, signature (4,-3,-1,0,-1). FORMULA G.f.: -(x^4+x^2+2*x-1)*x/((x^2+x-1)*(x^3-x^2+3*x-1)). a(n) = 4*a(n-1) - 3*a(n-2) - a(n-3) - a(n-5) for n>5. - Colin Barker, Jul 26 2017 3*a(n) = 2*A000045(n+1) + A200752(n+3) -2*A200752(n+2), n>0. - R. J. Mathar, Aug 05 2017 MATHEMATICA a = DifferenceRoot[Function[{a, n}, {a[n] + a[n+2] + 3a[n+3] - 4a[n+4] + a[n+5] == 0, a[0]==0, a[1]==1, a[2]==2, a[3]==4, a[4]==9, a[5]==21}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 09 2019 *) PROG (PARI) concat(0, Vec(x*(1 - 2*x - x^2 - x^4) / ((1 - x - x^2)*(1 - 3*x + x^2 - x^3)) + O(x^30))) \\ Colin Barker, Jul 26 2017 CROSSREFS Sequence in context: A204352 A195980 A136753 * A084261 A063026 A106219 Adjacent sequences:  A289663 A289664 A289665 * A289667 A289668 A289669 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Jul 25 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 12:53 EST 2022. Contains 350481 sequences. (Running on oeis4.)