The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084258 Decimal expansion of Sum_{k>=1} coth(Pi*k)/k^3. 1
 1, 2, 0, 5, 7, 9, 9, 6, 4, 8, 6, 7, 8, 3, 2, 6, 3, 4, 0, 1, 5, 7, 4, 1, 2, 2, 5, 2, 6, 0, 9, 4, 9, 8, 7, 0, 2, 3, 0, 8, 7, 6, 1, 2, 2, 2, 0, 0, 6, 6, 4, 3, 0, 7, 6, 9, 9, 4, 5, 0, 9, 8, 1, 5, 1, 4, 8, 0, 2, 6, 4, 6, 9, 0, 1, 2, 5, 5, 5, 2, 3, 4, 7, 9, 4, 2, 6, 0, 5, 9, 5, 7, 1, 2, 3, 3, 4, 4, 6, 3, 0, 6, 2, 2, 8, 2, 5, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Splitting the infinite sum Simon Plouffe unearthed a rapidly converging series for zeta(3). REFERENCES Bruce C. Berndt, Ramanujan Notebook part II, Infinite series, Springer Verlag, p. 293. LINKS Simon Plouffe, Formulae for zeta(2n+1). FORMULA Equals 7*Pi^3/180. EXAMPLE 1.20579964867832634015741225260949870230876122200664... MATHEMATICA RealDigits[7*Pi^3/180, 10, 100][[1]] (* Amiram Eldar, May 31 2021 *) PROG (PARI) 7*Pi^3/180 CROSSREFS Cf. A000796. Sequence in context: A140571 A078049 A021490 * A171016 A321205 A111352 Adjacent sequences:  A084255 A084256 A084257 * A084259 A084260 A084261 KEYWORD cons,nonn AUTHOR Benoit Cloitre, Jun 21 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 00:01 EDT 2021. Contains 345317 sequences. (Running on oeis4.)