The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177119 Primes whose digits can be arranged as consecutive digits (more precisely, to form a substring of 0123456789). 3
 2, 3, 5, 7, 23, 43, 67, 89, 1423, 2143, 2341, 2543, 4231, 4253, 4523, 4567, 4657, 5647, 5867, 6547, 6857, 10243, 12043, 20143, 20341, 20431, 23041, 24103, 25463, 25643, 30241, 32401, 36457, 40123, 40213, 40231, 41023, 41203, 42013, 43201, 45263, 45673, 45763 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS These are the primes whose digits can be permuted to give a substring of 0123456789. This sequence has exactly 6744 terms, none of which are 3-digit, 6-digit, 9-digit, or 10-digit numbers because these are all divisible by 3. The last term is 98745623. - Chris K. Caldwell LINKS Nathaniel Johnston, Table of n, a(n) for n = 1..6744 (full sequence) G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 2543 EXAMPLE a(12)=2543 can be arranged as 2345. 109 is not a term since 019 is not a substring of 0123456789. MAPLE A177119:={}: for d from 1 to 5 do for s from 0 to 10-d do l:=combinat[permute]([\$(s..(s+d-1))]): for k from 1 to d! do n:=add(10^(d-j)*l[k][j], j=1..d): if(isprime(n))then A177119 := A177119 union {n}: fi: od: od: od: op(A177119); # Nathaniel Johnston, Jun 23 2011 MATHEMATICA (* computes all terms *) Reap[Do[p=Prime[n]; If[p<10 || Union[Differences[Sort[IntegerDigits[p]]]] == {1}, Sow[p]], {n, PrimePi[98765432]}]][[2, 1]] (* T. D. Noe, Dec 10 2010 *) lst = {}; Do[AppendTo[lst, Select[FromDigits /@ Permutations@Range[n, d + n - 1], PrimeQ[#] &]], {d, 5}, {n, 0, 10 - d}]; Union@Flatten[lst] (* Arkadiusz Wesolowski, Jan 07 2013 *) CROSSREFS Cf. A000040, A001477, A156119. See A068710 for a different (and presumably infinite) version. Sequence in context: A059170 A068710 A120805 * A096265 A056041 A083017 Adjacent sequences:  A177116 A177117 A177118 * A177120 A177121 A177122 KEYWORD nonn,easy,fini,full,base AUTHOR G. L. Honaker, Jr., Dec 09 2010 EXTENSIONS Extended by Chris K. Caldwell Edited by N. J. A. Sloane, Jan 22 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 26 09:27 EST 2020. Contains 332277 sequences. (Running on oeis4.)