login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005689 Number of Twopins positions.
(Formerly M1042)
3
1, 2, 4, 7, 11, 16, 22, 30, 42, 61, 91, 137, 205, 303, 443, 644, 936, 1365, 1999, 2936, 4316, 6340, 9300, 13625, 19949, 29209, 42785, 62701, 91917, 134758, 197548, 289547 (list; graph; refs; listen; history; text; internal format)
OFFSET

6,2

REFERENCES

R. K. Guy, ``Anyone for Twopins?,'' in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=6..37.

R. Austin and R. K. Guy, Binary sequences without isolated ones, Fib. Quart., 16 (1978), 84-86.

R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]

V. C. Harris and C. C. Styles, A generalization of Fibonacci numbers, Fib. Quart. 2 (1964) 277-289, sequence u(n,4,2).

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992

Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,1).

FORMULA

G.f.: x^6*(1+x^2+x^3+x^4+x^5)/(1-2x+x^2-x^6). - Ralf Stephan, Apr 20 2004

Sum{k=0..floor(n/6), binomial(n-4k, 2k)} is 1, 1, 1, 1, 1, 1, 2, 4, 7, 11, ... - Paul Barry, Sep 16 2004

MAPLE

A005689:=-(1+z**2+z**3+z**4+z**5)/(z**3+z-1)/(z**3-z+1); [Conjectured by Simon Plouffe in his 1992 dissertation.]

MATHEMATICA

LinearRecurrence[{2, -1, 0, 0, 0, 1}, {1, 2, 4, 7, 11, 16}, 40] (* Harvey P. Dale, Feb 02 2019 *)

CROSSREFS

Sequence in context: A334251 A175776 A177176 * A212365 A131075 A133523

Adjacent sequences: A005686 A005687 A005688 * A005690 A005691 A005692

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 00:49 EDT 2023. Contains 361599 sequences. (Running on oeis4.)