OFFSET
0,8
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
G.f. satisfies: A(x) = 1+A(x)*(x-x^6*(1-A(x))).
a(n) = a(n-1) + Sum_{k=1..n-6} a(k)*a(n-6-k) if n>0; a(0) = 1.
EXAMPLE
a(0) = 1: the empty path.
a(1) = 1: UD.
a(6) = 1: UDUDUDUDUDUD.
a(7) = 2: UDUDUDUDUDUDUD, UUUUUUUDDDDDDD.
a(8) = 4: UDUDUDUDUDUDUDUD, UDUUUUUUUDDDDDDD, UUUUUUUDDDDDDDUD, UUUUUUUDUDDDDDDD.
MAPLE
a:= proc(n) option remember;
`if`(n=0, 1, a(n-1) +add(a(k)*a(n-6-k), k=1..n-6))
end:
seq(a(n), n=0..50);
# second Maple program:
a:= n-> coeff(series(RootOf(A=1+A*(x-x^6*(1-A)), A), x, n+1), x, n):
seq(a(n), n=0..50);
MATHEMATICA
CoefficientList[Series[(1 - x + x^6 - Sqrt[(1-x+x^6)^2 - 4*x^6])/ (2*x^6), {x, 0, 40}], x] (* Vaclav Kotesovec, Sep 02 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 10 2012
STATUS
approved