login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212365
Number of Dyck n-paths all of whose ascents and descents have lengths equal to 1 (mod 6).
2
1, 1, 1, 1, 1, 1, 1, 2, 4, 7, 11, 16, 22, 30, 43, 66, 106, 172, 275, 429, 656, 996, 1522, 2360, 3714, 5897, 9376, 14852, 23410, 36788, 57828, 91187, 144413, 229561, 365678, 582766, 928280, 1477877, 2353062, 3749721, 5983631, 9562565, 15300700, 24501417
OFFSET
0,8
LINKS
FORMULA
G.f. satisfies: A(x) = 1+A(x)*(x-x^6*(1-A(x))).
a(n) = a(n-1) + Sum_{k=1..n-6} a(k)*a(n-6-k) if n>0; a(0) = 1.
EXAMPLE
a(0) = 1: the empty path.
a(1) = 1: UD.
a(6) = 1: UDUDUDUDUDUD.
a(7) = 2: UDUDUDUDUDUDUD, UUUUUUUDDDDDDD.
a(8) = 4: UDUDUDUDUDUDUDUD, UDUUUUUUUDDDDDDD, UUUUUUUDDDDDDDUD, UUUUUUUDUDDDDDDD.
MAPLE
a:= proc(n) option remember;
`if`(n=0, 1, a(n-1) +add(a(k)*a(n-6-k), k=1..n-6))
end:
seq(a(n), n=0..50);
# second Maple program:
a:= n-> coeff(series(RootOf(A=1+A*(x-x^6*(1-A)), A), x, n+1), x, n):
seq(a(n), n=0..50);
MATHEMATICA
CoefficientList[Series[(1 - x + x^6 - Sqrt[(1-x+x^6)^2 - 4*x^6])/ (2*x^6), {x, 0, 40}], x] (* Vaclav Kotesovec, Sep 02 2014 *)
CROSSREFS
Column k=6 of A212363.
Sequence in context: A175776 A177176 A005689 * A131075 A365698 A133523
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 10 2012
STATUS
approved