login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175776
Partial sums of floor(n^2/15).
1
0, 0, 0, 0, 1, 2, 4, 7, 11, 16, 22, 30, 39, 50, 63, 78, 95, 114, 135, 159, 185, 214, 246, 281, 319, 360, 405, 453, 505, 561, 621, 685, 753, 825, 902, 983, 1069, 1160, 1256, 1357, 1463, 1575, 1692, 1815, 1944, 2079, 2220, 2367, 2520, 2680, 2846
OFFSET
0,6
COMMENTS
There are several sequences of integers of the form floor(n^2/k) for whose partial sums we can establish identities as following (only for k = 2,...,9,11,12,15,16,24).
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,0,0,0,0,0,0,0,0,0,0,1,-3,3,-1).
FORMULA
a(n) = round((2*n+1)*(n^2 + n - 14)/90).
a(n) = floor((n-2)*(2*n^2 + 7*n - 13)/90).
a(n) = ceiling((n+3)*(2*n^2 - 3*n - 18)/90).
a(n) = a(n-15) + (n+1)*(n-15) + 78, n > 14.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-15) - 3*a(n-16) + 3*a(n-17) - a(n-18); a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=1, a(5)=2, a(6)=4, a(7)=7, a(8)=11, a(9)=16, a(10)=22, a(11)=30, a(12)=39, a(13)=50, a(14)=63, a(15)=78, a(16)=95, a(17)=114. - Harvey P. Dale, May 04 2012
G.f.: x^4*(x+1)*(x^2 - x + 1)*(x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)/((x-1)^4*(x^2 + x + 1)*(x^4 + x^3 + x^2 + x + 1)*(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)). [Colin Barker, Oct 27 2012]
EXAMPLE
a(15) = 0 + 0 + 0 + 0 + 1 + 1 + 2 + 3 + 4 + 5 + 6 + 8 + 9 + 11 + 13 + 15 = 78.
MAPLE
seq(round((2*n+1)*(n^2+n-14)/90), n=0..50)
MATHEMATICA
Accumulate[Floor[Range[0, 60]^2/15]] (* or *) LinearRecurrence[{3, -3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -3, 3, -1}, {0, 0, 0, 0, 1, 2, 4, 7, 11, 16, 22, 30, 39, 50, 63, 78, 95, 114}, 60] (* Harvey P. Dale, May 04 2012 *)
PROG
(Magma) [Round((2*n+1)*(n^2+n-14)/90): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
CROSSREFS
Sequence in context: A212366 A309838 A334251 * A177176 A005689 A212365
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Dec 04 2010
STATUS
approved