login
A309838
a(n) = number of dimensions of semisimple matrix subalgebras.
2
2, 4, 7, 11, 16, 22, 29, 39, 50, 60, 73, 88, 103, 120, 139, 160, 181, 203, 229, 256, 284, 313, 343, 377, 412, 448, 487, 528, 569, 610, 653, 699, 748, 797, 849, 904, 959, 1014, 1070, 1129, 1191, 1255, 1321, 1388, 1456, 1526, 1598, 1672, 1746, 1821, 1899, 1981, 2064
OFFSET
1,1
COMMENTS
a(n) = |A_n| in the Heikoop paper.
A semisimple matrix subalgebra of M_n(k) for an algebraically closed field k is a direct sum of M_n_i(k) such that Sum (n_i) <= n. See Heikoop paper, Section 3.2, for more.
LINKS
Phillip Tomas Heikoop, Dimensions of Matrix Subalgebras, Bachelor's Thesis, Worcester Polytechnic Institute (2019).
FORMULA
a(n) <= n^2 - Sqrt(2) * Sqrt(2n+ 3) * n.
CROSSREFS
KEYWORD
nonn
AUTHOR
Phillip Heikoop, Aug 19 2019
STATUS
approved