|
|
A138544
|
|
Moment sequence of tr(A^4) in USp(6).
|
|
3
|
|
|
1, -1, 4, -9, 42, -130, 660, -2415, 12810, -51786, 281736, -1216446, 6727644, -30440124, 170316432, -798126615, 4504487130, -21692469370, 123255492360, -606672653730, 3465702008340, -17366224451940, 99645553785960, -506814533253210, 2918768920720380, -15034038412333500
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
If A is a random matrix in the compact group USp(6) (6 X 6 complex matrices which are unitary and symplectic), then a(n) = E[(tr(A^4))^n] is the n-th moment of the trace of A^4. See A138545 for central moments.
|
|
LINKS
|
|
|
FORMULA
|
mgf is A(z) = det[F_{i+j-2}(z)], 1<=i,j<=3, where F_m(z) = Sum_j binomial(m,j)(B_{(2j-m)/4}(z)-B_{(2j-m+2)/4}(z)) and B_v(z)=0 for non-integer v and otherwise B_v(z)=I_v(2z), with I_v(z) the hyperbolic Bessel function (of the first kind) of order v.
|
|
EXAMPLE
|
a(3) = -9 because E[(tr(A^4))^3] = -9 for a random matrix A in USp(6).
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|