|
|
A138547
|
|
Moment sequence of tr(A^6) in USp(6).
|
|
12
|
|
|
1, -1, 6, -15, 90, -310, 1860, -7455, 44730, -195426, 1172556, -5416026, 32496156, -156061620, 936369720, -4628393055, 27770358330, -140348412490, 842090474940, -4331544836190, 25989269017140, -135614951248140, 813689707488840, -4296741195214650, 25780447171287900
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
If A is a random matrix in the compact group USp(6) (6 X 6 complex matrices that are unitary and symplectic), then a(n) = E[(tr(A^6))^n] is the n-th moment of the trace of A^6. See A138547 for central moments.
|
|
LINKS
|
|
|
FORMULA
|
mgf is A(z) = det[F_{i+j-2}(z)], 1<=i,j<=3, where F_m(z) = Sum_j binomial(m,j)(B_{(2j-m)/6}(z)-B_{(2j-m+2)/6}(z)) and B_v(z)=0 for non-integer v and otherwise B_v(z)=I_v(2z) with I_v(z) is the hyperbolic Bessel function (of the first kind) of order v.
|
|
EXAMPLE
|
a(3) = -15 because E[(tr(A^6))^3] = -15 for a random matrix A in USp(6).
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|