|
|
A138543
|
|
Moment sequence of tr(A^3) in USp(6).
|
|
1
|
|
|
1, 0, 3, 0, 26, 0, 345, 0, 5754, 0, 110586, 0, 2341548, 0, 53208441, 0, 1276027610, 0, 31930139670, 0, 826963069140, 0, 22035414489270, 0, 601361536493340, 0, 16749316314679500, 0, 474777481850283240, 0, 13665774112508864385, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
If A is a random matrix in the compact group USp(6) (6 X 6 complex matrices which are unitary and symplectic), then a(n) = E[(tr(A^3))^n] is the n-th moment of the trace of A^3.
|
|
LINKS
|
|
|
FORMULA
|
mgf is A(z) = det[F_{i+j-2}(z)], 1<=i,j<=3, where F_m(z) = Sum_j binomial(m,j)(B_{(2j-m)/3}(z)-B_{(2j-m+2)/3}(z)) and B_v(z)=0 for non-integer v and otherwise B_v(z)=I_v(2z) with I_v(z) is the hyperbolic Bessel function (of the first kind) of order v.
|
|
EXAMPLE
|
a(4) = 26 because E[(tr(A^2))^4] = 26 for a random matrix A in USp(6).
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|