|
|
A190963
|
|
a(n) = 3*a(n-1) - 9*a(n-2), with a(0)=0, a(1)=1.
|
|
2
|
|
|
0, 1, 3, 0, -27, -81, 0, 729, 2187, 0, -19683, -59049, 0, 531441, 1594323, 0, -14348907, -43046721, 0, 387420489, 1162261467, 0, -10460353203, -31381059609, 0, 282429536481, 847288609443, 0, -7625597484987, -22876792454961, 0, 205891132094649
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3, -9).
|
|
FORMULA
|
a(n) = (1/9*I)*sqrt(3)*((3/2-(3/2*I)*sqrt(3))^n - (3/2+(3/2*I)* sqrt(3))^n). - Paolo P. Lava, Jun 01 2011
G.f.: x/(1-3*x+9*x^2). - Philippe Deléham, Oct 11 2011
|
|
MATHEMATICA
|
LinearRecurrence[{3, -9}, {0, 1}, 50]
|
|
PROG
|
(PARI) x='x+O('x^30); concat([0], Vec(x/(1-3*x+9*x^2))) \\ G. C. Greubel, Jan 25 2018
(MAGMA) I:=[0, 1]; [n le 2 select I[n] else 3*Self(n-1) - 9*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 25 2018
|
|
CROSSREFS
|
Cf. A190958 (index to generalized Fibonacci sequences).
Sequence in context: A138543 A238104 A143769 * A296436 A215588 A215683
Adjacent sequences: A190960 A190961 A190962 * A190964 A190965 A190966
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Vladimir Joseph Stephan Orlovsky, May 24 2011
|
|
STATUS
|
approved
|
|
|
|