login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190963
a(n) = 3*a(n-1) - 9*a(n-2), with a(0)=0, a(1)=1.
2
0, 1, 3, 0, -27, -81, 0, 729, 2187, 0, -19683, -59049, 0, 531441, 1594323, 0, -14348907, -43046721, 0, 387420489, 1162261467, 0, -10460353203, -31381059609, 0, 282429536481, 847288609443, 0, -7625597484987, -22876792454961, 0, 205891132094649
OFFSET
0,3
FORMULA
G.f.: x/(1-3*x+9*x^2). - Philippe Deléham, Oct 11 2011
From G. C. Greubel, Jan 11 2024: (Start)
a(n) = 3^(n-1)*ChebyshevU(n-1, 1/2).
a(n) = 3^(n-1)*A128834(n).
E.g.f.: (2/(3*sqrt(3)))*exp(3*x/2)*sin(3*sqrt(3)*x/2). (End)
MATHEMATICA
LinearRecurrence[{3, -9}, {0, 1}, 50]
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(x/(1-3*x+9*x^2))) \\ G. C. Greubel, Jan 25 2018
(Magma) [n le 2 select n-1 else 3*Self(n-1)-9*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 25 2018
(SageMath)
A190963=BinaryRecurrenceSequence(3, -9, 0, 1)
[A190963(n) for n in range(41)] # G. C. Greubel, Jan 11 2024
CROSSREFS
Cf. A190958 (index to generalized Fibonacci sequences).
Cf. A128834.
Sequence in context: A138543 A238104 A143769 * A296436 A215588 A215683
KEYWORD
sign,easy
AUTHOR
STATUS
approved