|
|
A238104
|
|
Sum of digits in periodic part of decimal expansion of 1/prime(n).
|
|
4
|
|
|
0, 3, 0, 27, 9, 27, 72, 81, 99, 126, 54, 9, 18, 90, 207, 63, 261, 270, 144, 126, 36, 54, 171, 198, 432, 18, 153, 225, 486, 504, 189, 585, 36, 207, 666, 306, 351, 360, 747, 207, 801, 810, 369, 864, 441, 405, 135, 999, 486, 1026, 1044, 18, 135, 225, 1152, 1179, 1206, 18, 324, 126, 621, 657, 675, 612, 1404, 351
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
Prime(6) = 13, 1/13 = 0.076923076923076923076923..., the periodic part of which is 076923, whose digits add to 27 = a(6).
Since prime(n) must either divide or be coprime to 10, decimal expansions of prime(n) must either terminate or be purely recurrent, respectively. The only primes that divide 10 are prime(1) and prime(3), thus a(1) and a(3) = 0 as they have terminating decimal expansions. - Michael De Vlieger, May 20 2017
|
|
MATHEMATICA
|
Table[Function[p, If[Divisible[10, p], 0, Total[RealDigits[1/p][[1, 1]]]]]@ Prime@ n, {n, 66}] (* Michael De Vlieger, May 20 2017 *)
|
|
PROG
|
(PARI) forprime(i=1, 1e2, print1(sumdigits((10^iferr(znorder(Mod(10, i)), E, 0)-1)/i)", ")) \\ Lear Young, Mar 01 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|