The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238104 Sum of digits in periodic part of decimal expansion of 1/prime(n). 4
 0, 3, 0, 27, 9, 27, 72, 81, 99, 126, 54, 9, 18, 90, 207, 63, 261, 270, 144, 126, 36, 54, 171, 198, 432, 18, 153, 225, 486, 504, 189, 585, 36, 207, 666, 306, 351, 360, 747, 207, 801, 810, 369, 864, 441, 405, 135, 999, 486, 1026, 1044, 18, 135, 225, 1152, 1179, 1206, 18, 324, 126, 621, 657, 675, 612, 1404, 351 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Digit-sum of A060283(n). LINKS Michael De Vlieger, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A007953(A060283(n)). - Michel Marcus, Mar 02 2014 EXAMPLE Prime(6) = 13, 1/13 = 0.076923076923076923076923..., the periodic part of which is 076923, whose digits add to 27 = a(6). Since prime(n) must either divide or be coprime to 10, decimal expansions of prime(n) must either terminate or be purely recurrent, respectively. The only primes that divide 10 are prime(1) and prime(3), thus a(1) and a(3) = 0 as they have terminating decimal expansions. - Michael De Vlieger, May 20 2017 MATHEMATICA Table[Function[p, If[Divisible[10, p], 0, Total[RealDigits[1/p][[1, 1]]]]]@ Prime@ n, {n, 66}] (* Michael De Vlieger, May 20 2017 *) PROG (PARI) forprime(i=1, 1e2, print1(sumdigits((10^iferr(znorder(Mod(10, i)), E, 0)-1)/i)", ")) \\ Lear Young, Mar 01 2014 CROSSREFS Cf. A060283, A002371, A238105, A238106. Sequence in context: A360063 A009777 A138543 * A143769 A190963 A296436 Adjacent sequences: A238101 A238102 A238103 * A238105 A238106 A238107 KEYWORD nonn,base AUTHOR Kozhukhov Vlad, Dec 04 2013 EXTENSIONS Edited by David Applegate, Mar 01 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 04:42 EDT 2023. Contains 365673 sequences. (Running on oeis4.)