login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190964
a(n) = 3*a(n-1) - 10*a(n-2), with a(0)=0, a(1)=1.
2
0, 1, 3, -1, -33, -89, 63, 1079, 2607, -2969, -34977, -75241, 124047, 1124551, 2133183, -4845961, -35869713, -59149529, 181248543, 1135240919, 1593237327, -6572697209, -35650464897, -41224422601, 232831381167, 1110738369511, 1003901296863, -8095679804521
OFFSET
0,3
FORMULA
G.f.: x/(1-3*x+10*x^2). - Philippe Deléham, Oct 11 2011
From G. C. Greubel, Jan 11 2024: (Start)
a(n) = 10^((n-1)/2)*ChebyshevU(n-1, 3/(2*sqrt(10))).
E.g.f.: (2/sqrt(31))*exp(3*x/2)*sin(sqrt(31)*x/2). (End)
MATHEMATICA
LinearRecurrence[{3, -10}, {0, 1}, 50]
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(x/(1-3*x+10*x^2))) \\ G. C. Greubel, Jan 25 2018
(Magma) I:=[0, 1]; [n le 2 select I[n] else 3*Self(n-1) - 10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 25 2018
(SageMath)
A190964=BinaryRecurrenceSequence(3, -10, 0, 1)
[A190964(n) for n in range(41)] # G. C. Greubel, Jan 11 2024
CROSSREFS
Cf. A190958 (index to generalized Fibonacci sequences).
Sequence in context: A095844 A113110 A317363 * A109842 A270101 A271288
KEYWORD
sign
AUTHOR
STATUS
approved