|
|
A095844
|
|
Numerator of the integral of the n-th power of the Cantor function.
|
|
5
|
|
|
1, 1, 3, 1, 33, 5, 75, 611, 97653, 83057, 22018179, 9625216, 20894487717, 93120706729, 411117020063871, 297434062421057, 6650181371241300777, 6082551300359191981, 2198073713661546055399083
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..18.
E. A. Gorin and B. N. Kukushkin, Integrals related to the Cantor function, St. Petersburg Math. J., 15, 449-468, 2004.
Eric Weisstein's World of Mathematics, Cantor Function
|
|
FORMULA
|
The integral, a rational number, is given by J(n)=1/(n+1)-sum(binomial(n, 2k)[2^(2k-1)-1]bernoulli(2k)/[(3*2^(2k-1)-1)(n-2k+1)], k = 1 .. floor(n/2)). - Emeric Deutsch, Feb 22 2005
|
|
EXAMPLE
|
1, 1/2, 3/10, 1/5, 33/230, 5/46, 75/874, 611/8740, 97653/1673710, ...
|
|
MAPLE
|
seq(numer(1/(n+1)-sum(binomial(n, 2*k)*(2^(2*k-1)-1)*bernoulli(2*k)/(3*2^(2*k-1)-1)/(n-2*k+1), k = 1 .. floor(1/2*n))), n=1..18); # Emeric Deutsch
|
|
MATHEMATICA
|
a[n_] := Numerator[ 1/(n+1) - Sum[Binomial[n, 2 k]*Floor[2^(2k - 1) - 1]*BernoulliB[2k]/Floor[(3*2^(2k - 1) - 1)*(n - 2k + 1)], {k, 1, Floor[n/2]}]]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 23 2012, after Emeric Deutsch *)
|
|
CROSSREFS
|
Cf. A095845.
Sequence in context: A016481 A303818 A047815 * A113110 A317363 A190964
Adjacent sequences: A095841 A095842 A095843 * A095845 A095846 A095847
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
Eric W. Weisstein, Jun 08 2004
|
|
STATUS
|
approved
|
|
|
|