|
|
A095845
|
|
Denominator of the integral of the n-th power of the Cantor function.
|
|
7
|
|
|
1, 2, 10, 5, 230, 46, 874, 8740, 1673710, 1673710, 513828970, 256914485, 631290272542, 3156451362710, 15513958447719650, 12411166758175720, 305013731457236950790, 305013731457236950790
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
The integral, a rational number, is given by J(n) = 1/(n+1) - Sum_{k = 1..floor(n/2)} (binomial(n,2k)*(2^(2k-1)-1)*bernoulli(2k)/((3*2^(2k-1)-1)*(n-2k+1)]). - Emeric Deutsch, Feb 22 2005
Note that the Cantor function C(x) satisfies C(x) = C(3*x)/2 for x in [0,1/3], 1/2 for x in [1/3,2/3] and (1+C(3*x-2))/2 for x in [2/3,1]. Integrating both sides yields J(n) = (1 + Sum_{k=0..n-1} binomial(n,k)*J(k))/(3*2^n - 2) with J(0) = 1, where J(n) := Integral_{x=0..1} (C(x))^n dx. - Jianing Song, Nov 19 2023
|
|
EXAMPLE
|
1, 1/2, 3/10, 1/5, 33/230, 5/46, 75/874, 611/8740, 97653/1673710, ...
|
|
MAPLE
|
seq(denom(1/(n+1)-sum(binomial(n, 2*k)*(2^(2*k-1)-1)*bernoulli(2*k)/(3*2^(2*k-1)-1)/(n-2*k+1), k = 1 .. floor(1/2*n))), n=1..17); # Emeric Deutsch, Feb 22 2005
|
|
MATHEMATICA
|
a[n_] := Denominator[1/(n + 1) - Sum[(Binomial[n, 2*k]*Floor[2^(2*k - 1) - 1]*BernoulliB[2*k])/Floor[(3*2^(2*k - 1) - 1)*(-2*k + n + 1)], {k, 1, Floor[n/2]}]]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Oct 23 2012, after Emeric Deutsch *)
f[0] = 1; f[1] = 1/2; f[n_] := f[n] = (1/(3*2^n - 2))*(2 + Sum[Binomial[n, k]*f[k], {k, 1, n - 1}]); Denominator[Array[f, 20, 0]] (* Amiram Eldar, Jan 26 2024 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|