login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A095845 Denominator of the integral of the n-th power of the Cantor function. 5
1, 2, 10, 5, 230, 46, 874, 8740, 1673710, 1673710, 513828970, 256914485, 631290272542, 3156451362710, 15513958447719650, 12411166758175720, 305013731457236950790, 305013731457236950790 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

E. A. Gorin and B. N. Kukushkin, Integrals related to the Cantor function, St. Petersburg Math. J., 15, 449-468, 2004.

LINKS

Table of n, a(n) for n=0..17.

Eric Weisstein's World of Mathematics, Cantor Function

FORMULA

The integral, a rational number, is given by J(n)=1/(n+1)-sum(binomial(n, 2k)[2^(2k-1)-1]bernoulli(2k)/[(3*2^(2k-1)-1)(n-2k+1) ], k = 1 .. floor(n/2)). - Emeric Deutsch, Feb 22 2005

EXAMPLE

1, 1/2, 3/10, 1/5, 33/230, 5/46, 75/874, 611/8740, 97653/1673710, ...

MAPLE

seq(denom(1/(n+1)-sum(binomial(n, 2*k)*(2^(2*k-1)-1)*bernoulli(2*k)/(3*2^(2*k-1)-1)/(n-2*k+1), k = 1 .. floor(1/2*n))), n=1..17); # Emeric Deutsch

MATHEMATICA

a[n_] := Denominator[1/(n + 1) - Sum[(Binomial[n, 2*k]*Floor[2^(2*k - 1) - 1]*BernoulliB[2*k])/Floor[(3*2^(2*k - 1) - 1)*(-2*k + n + 1)], {k, 1, Floor[n/2]}]]; Table[a[n], {n, 0, 17}] (* Jean-Fran├žois Alcover, Oct 23 2012, after Emeric Deutsch *)

CROSSREFS

Cf. A095844.

Sequence in context: A276850 A033468 A047816 * A105801 A086064 A076374

Adjacent sequences:  A095842 A095843 A095844 * A095846 A095847 A095848

KEYWORD

nonn,frac

AUTHOR

Eric W. Weisstein, Jun 08 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 12:57 EDT 2019. Contains 324222 sequences. (Running on oeis4.)