|
|
A095845
|
|
Denominator of the integral of the n-th power of the Cantor function.
|
|
5
|
|
|
1, 2, 10, 5, 230, 46, 874, 8740, 1673710, 1673710, 513828970, 256914485, 631290272542, 3156451362710, 15513958447719650, 12411166758175720, 305013731457236950790, 305013731457236950790
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..17.
E. A. Gorin and B. N. Kukushkin, Integrals related to the Cantor function, St. Petersburg Math. J., 15, 449-468, 2004.
Eric Weisstein's World of Mathematics, Cantor Function
|
|
FORMULA
|
The integral, a rational number, is given by J(n)=1/(n+1)-sum(binomial(n, 2k)[2^(2k-1)-1]bernoulli(2k)/[(3*2^(2k-1)-1)(n-2k+1) ], k = 1 .. floor(n/2)). - Emeric Deutsch, Feb 22 2005
|
|
EXAMPLE
|
1, 1/2, 3/10, 1/5, 33/230, 5/46, 75/874, 611/8740, 97653/1673710, ...
|
|
MAPLE
|
seq(denom(1/(n+1)-sum(binomial(n, 2*k)*(2^(2*k-1)-1)*bernoulli(2*k)/(3*2^(2*k-1)-1)/(n-2*k+1), k = 1 .. floor(1/2*n))), n=1..17); # Emeric Deutsch
|
|
MATHEMATICA
|
a[n_] := Denominator[1/(n + 1) - Sum[(Binomial[n, 2*k]*Floor[2^(2*k - 1) - 1]*BernoulliB[2*k])/Floor[(3*2^(2*k - 1) - 1)*(-2*k + n + 1)], {k, 1, Floor[n/2]}]]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Oct 23 2012, after Emeric Deutsch *)
|
|
CROSSREFS
|
Cf. A095844.
Sequence in context: A276850 A033468 A047816 * A105801 A086064 A076374
Adjacent sequences: A095842 A095843 A095844 * A095846 A095847 A095848
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
Eric W. Weisstein, Jun 08 2004
|
|
STATUS
|
approved
|
|
|
|