login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of the integral of the n-th power of the Cantor function.
7

%I #35 Jan 14 2025 06:01:35

%S 1,2,10,5,230,46,874,8740,1673710,1673710,513828970,256914485,

%T 631290272542,3156451362710,15513958447719650,12411166758175720,

%U 305013731457236950790,305013731457236950790,119935974414957427604889850,3156209853025195463286575

%N Denominator of the integral of the n-th power of the Cantor function.

%H Amiram Eldar, <a href="/A095845/b095845.txt">Table of n, a(n) for n = 0..117</a>

%H E. A. Gorin and B. N. Kukushkin, <a href="https://doi.org/10.1090/S1061-0022-04-00817-9">Integrals related to the Cantor function</a>, St. Petersburg Math. J., 15, 449-468, 2004.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CantorFunction.html">Cantor Function</a>.

%F The integral, a rational number, is given by J(n) = 1/(n+1) - Sum_{k = 1..floor(n/2)} binomial(n,2*k)*(2^(2*k-1)-1)*bernoulli(2*k)/((3*2^(2*k-1)-1)*(n-2*k+1)). - _Emeric Deutsch_, Feb 22 2005

%F Note that the Cantor function C(x) satisfies C(x) = C(3*x)/2 for x in [0,1/3], 1/2 for x in [1/3,2/3] and (1+C(3*x-2))/2 for x in [2/3,1]. Integrating both sides yields J(n) = (1 + Sum_{k=0..n-1} binomial(n,k)*J(k))/(3*2^n - 2) with J(0) = 1, where J(n) := Integral_{x=0..1} (C(x))^n dx. - _Jianing Song_, Nov 19 2023

%e 1, 1/2, 3/10, 1/5, 33/230, 5/46, 75/874, 611/8740, 97653/1673710, ...

%p seq(denom(1/(n+1)-sum(binomial(n,2*k)*(2^(2*k-1)-1)*bernoulli(2*k)/(3*2^(2*k-1)-1)/(n-2*k+1),k = 1 .. floor(1/2*n))),n=1..17); # _Emeric Deutsch_, Feb 22 2005

%t a[n_] := Denominator[1/(n + 1) - Sum[(Binomial[n, 2*k]*Floor[2^(2*k - 1) - 1]*BernoulliB[2*k])/Floor[(3*2^(2*k - 1) - 1)*(-2*k + n + 1)], {k, 1, Floor[n/2]}]]; Table[a[n], {n, 0, 17}] (* _Jean-François Alcover_, Oct 23 2012, after _Emeric Deutsch_ *)

%t f[0] = 1; f[1] = 1/2; f[n_] := f[n] = (1/(3*2^n - 2))*(2 + Sum[Binomial[n, k]*f[k], {k, 1, n - 1}]); Denominator[Array[f, 20, 0]] (* _Amiram Eldar_, Jan 26 2024 *)

%Y Cf. A095844 (numerators).

%K nonn,frac,changed

%O 0,2

%A _Eric W. Weisstein_, Jun 08 2004