login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098574 a(n) = Sum_{k=0..floor(n/7)} C(n-5*k,2*k). 3
1, 1, 1, 1, 1, 1, 1, 2, 4, 7, 11, 16, 22, 29, 38, 51, 71, 102, 149, 218, 316, 452, 639, 897, 1257, 1766, 2493, 3536, 5031, 7165, 10196, 14484, 20538, 29085, 41168, 58282, 82561, 117036, 165995, 235492, 334074, 473824, 671856, 952449, 1350078, 1913702 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,8

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

R. Austin and R. K. Guy, Binary sequences without isolated ones, Fib. Quart., 16 (1978), 84-86.

V. C. Harris, C. C. Styles, A generalization of Fibonacci numbers, Fib. Quart. 2 (1964) 277-289, sequence u(n,5,2).

Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,1).

FORMULA

G.f.: (1-x)/(1-2*x+x^2-x^7).

MATHEMATICA

CoefficientList[Series[(1-x)/(1-2*x+x^2-x^7), {x, 0, 50}], x] (* G. C. Greubel, Feb 03 2018 *)

PROG

(PARI) a(n) = sum(k=0, n\7, binomial(n-5*k, 2*k)); \\ Michel Marcus, Sep 06 2017

(PARI) x='x+O('x^30); Vec((1-x)/(1-2*x+x^2-x^7)) \\ G. C. Greubel, Feb 03 2018

(MAGMA) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x)/(1-2*x+x^2-x^7))) // G. C. Greubel, Feb 03 2018

CROSSREFS

Cf. A005251, A005252, A005253, A005689.

Sequence in context: A212367 A225088 A175777 * A212366 A309838 A334251

Adjacent sequences:  A098571 A098572 A098573 * A098575 A098576 A098577

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Sep 16 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 11:22 EDT 2020. Contains 337289 sequences. (Running on oeis4.)