login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309841 If n = Sum (2^e_k) then a(n) = Product ((e_k + 2)!). 0
1, 2, 6, 12, 24, 48, 144, 288, 120, 240, 720, 1440, 2880, 5760, 17280, 34560, 720, 1440, 4320, 8640, 17280, 34560, 103680, 207360, 86400, 172800, 518400, 1036800, 2073600, 4147200, 12441600, 24883200, 5040, 10080, 30240, 60480, 120960, 241920, 725760, 1451520, 604800 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..40.

FORMULA

G.f.: Product_{k>=0} (1 + (k + 2)! * x^(2^k)).

a(0) = 1; a(n) = (floor(log_2(n)) + 2)! * a(n - 2^floor(log_2(n))).

a(2^(k-1)-1) = A000178(k).

EXAMPLE

21 = 2^0 + 2^2 + 2^4 so a(21) = 2! * 4! * 6! = 34560.

MAPLE

a:= n-> (l-> mul((i+1)!^l[i], i=1..nops(l)))(convert(n, base, 2)):

seq(a(n), n=0..40);  # Alois P. Heinz, Feb 10 2020

MATHEMATICA

nmax = 40; CoefficientList[Series[Product[(1 + (k + 2)! x^(2^k)), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]

a[0] = 1; a[n_] := (Floor[Log[2, n]] + 2)! a[n - 2^Floor[Log[2, n]]]; Table[a[n], {n, 0, 40}]

PROG

(PARI) a(n)={vecprod([(k+1)! | k<-Vec(select(b->b, Vecrev(digits(n, 2)), 1))])} \\ Andrew Howroyd, Aug 19 2019

CROSSREFS

Cf. A000142, A000178, A019565, A029930, A058295, A059590, A121663, A283477.

Sequence in context: A051487 A111286 A058295 * A132176 A197469 A133953

Adjacent sequences:  A309838 A309839 A309840 * A309842 A309843 A309844

KEYWORD

nonn,changed

AUTHOR

Ilya Gutkovskiy, Aug 19 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 23:41 EST 2020. Contains 332113 sequences. (Running on oeis4.)