login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029930
If 2n = Sum 2^e_i, a(n) = Product 2^e_i.
7
1, 2, 4, 8, 8, 16, 32, 64, 16, 32, 64, 128, 128, 256, 512, 1024, 32, 64, 128, 256, 256, 512, 1024, 2048, 512, 1024, 2048, 4096, 4096, 8192, 16384, 32768, 64, 128, 256, 512, 512, 1024, 2048, 4096, 1024, 2048, 4096, 8192, 8192, 16384, 32768, 65536, 2048
OFFSET
0,2
LINKS
Arvind Ayyer, A. Prasad and S. Spallone, Representations of symmetric groups with non-trivial determinant, arXiv preprint arXiv:1604.08837 [math.RT], 2016. See Eq. (14).
FORMULA
From Ralf Stephan, Jun 19 2003: (Start)
G.f.: Prod_{k>=0} 1+2^(k+1)x^2^k.
a(0) = 1, a(2n) = 2^e1(n)*a(n), a(2n+1) = 2a(2n), where e1(n) = A000120(n).
a(n) = 2^A029931(n). (End)
EXAMPLE
14 = 8+4+2 so a(7) = 8*4*2 = 64.
MAPLE
HammingWeight := n -> add(i, i = convert(n, base, 2)):
a := proc(n) option remember; `if`(n = 0, 1,
ifelse(n::even, 2^HammingWeight(n/2)*a(n/2), 2*a(n-1))) end:
seq(a(n), n = 0..48); # Peter Luschny, Oct 30 2021
MATHEMATICA
e1[n_] := Total[IntegerDigits[n, 2]]; a[0] = 1; a[n_] := a[n] = If[EvenQ[ n], 2^e1[n/2] a[n/2], 2 a[n-1]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 07 2016 *)
PROG
(PARI) a(n) = {my(bd = Vecrev(binary(n))); prod(k=1, #bd, if (bd[k], 2^k, 1)); } \\ Michel Marcus, Mar 07 2016
CROSSREFS
A bisection of A059867.
Sequence in context: A076735 A192097 A132720 * A334284 A193850 A140119
KEYWORD
nonn,easy,look
STATUS
approved