login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212362
Triangle by rows, binomial transform of the beheaded Pascal's triangle A074909.
1
1, 2, 2, 4, 7, 3, 8, 19, 15, 4, 16, 47, 52, 26, 5, 32, 111, 155, 110, 40, 6, 64, 255, 426, 385, 200, 57, 7, 128, 575, 1113, 1211, 805, 329, 77, 8, 256, 1279, 2808, 3556, 2856, 1498, 504, 100, 9, 512, 2815, 6903, 9948, 9324, 5922, 2562, 732, 126, 10
OFFSET
0,2
COMMENTS
Row sums of the triangle inverse = A027641/A027642, the Bernoulli numbers; (1, -1/2, 1/6, 0, -1/30,...)
FORMULA
Binomial transform of the beheaded Pascal's triangle (A074909) as a matrix. (The beheaded Pascal matrix deletes the rightmost border of 1's.)
From G. C. Greubel, Aug 05 2021: (Start)
T(n, k) = Sum_{j=0..n} binomial(n, j)*binomial(j+1, k) - binomial(n, k-1), with T(n, 0) = 2^n.
T(n, k) = 2^(n-k)*binomial(n+1, k) + (2^(n-k) - 1)*binomial(n, k-1).
Sum_{k=0..n} T(n, k) = A027649(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A106515(n). (End)
EXAMPLE
First few rows of the triangle are:
1;
2, 2;
4, 7, 3;
8, 19, 15, 4
16, 47, 52, 26, 5;
32, 111, 155, 110, 40, 6;
64, 255, 426, 385, 200, 57, 7;
128, 575, 1113, 1211, 805, 329, 77, 8;
256, 1279, 2808, 3556, 2856, 1498, 504, 100, 9;
...
MAPLE
A212362 := proc(n, k)
add( binomial(n, i)*A074909(i, k), i=0..n) ;
end proc: # R. J. Mathar, Aug 03 2015
MATHEMATICA
T[n_, k_]= 2^(n-k)*Binomial[n+1, k] + (2^(n-k) -1)*Binomial[n, k-1];
Table[T[n, k] , {n, 0, 12}, {k, 0, n}] //Flatten (* G. C. Greubel, Aug 05 2021 *)
PROG
(Magma)
A074909:= func< n, k | k lt 0 or k gt n select 0 else Binomial(n+1, k) >;
A212362:= func< n, k | (&+[ Binomial(n, j)*A074909(j, k) : j in [0..n]]) >;
[A212362(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 05 2021
(Sage)
def T(n, k): return 2^(n-k)*binomial(n+1, k) + (2^(n-k) - 1)*binomial(n, k-1)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 05 2021
CROSSREFS
Cf. A074909, A027641/A027642, A027649 (row sums), A006589 (2nd column), A106515.
Sequence in context: A249758 A157470 A120280 * A209142 A368518 A115754
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jun 29 2012
EXTENSIONS
a(22) corrected by G. C. Greubel, Aug 05 2021
STATUS
approved