login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A005690
Number of Twopins positions.
(Formerly M0999)
1
1, 2, 4, 6, 9, 12, 18, 26, 41, 62, 96, 142, 212, 308, 454, 662, 979, 1438, 2128, 3126, 4606, 6748, 9910, 14510, 21298, 31212, 45820, 67176, 98571, 144476
OFFSET
8,2
REFERENCES
R. K. Guy, ``Anyone for Twopins?,'' in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f.: [x^8]/[(x^3-x+1)(x^3+x-1)(x^6+x^2-1)]. - Ralf Stephan, Apr 22 2004
MAPLE
A005690:=1/(z**3+z-1)/(z**3-z+1)/(z**6+z**2-1); [Conjectured (correctly) by Simon Plouffe in his 1992 dissertation.]
CROSSREFS
Sequence in context: A267161 A173784 A094660 * A364378 A005779 A351075
KEYWORD
nonn
AUTHOR
STATUS
approved